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1 Introduction into interpolation and fitting of PES

• molecular dynamics investigation (scattering, spectroscopy, etc.):

- need information about the interaction potential or the potential energy
surface PES (Fig. 1)

- multidimensional hypersurface or single values V (R), V (R′), V (R′′), ..

- special coordinates

• there are three possibilities to create PESs:

(1) use of data from electronic structure calculations.

(2) use of experimental information (e. g. RKR [2]), that means the PES
must reproduce experimental results in a dynamical calculation.

(3) combination of the above two cases.
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Figure 1: (a) Potential energy
surface for a general reaction
R → I → P (b) Contour
plot that corresponds to a.
(c) Reaction coordinate for
the process depicted in a and
b, corresponding to the solid
lines of a and b.
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results of ab initio (or semiempirical) electronic structure calculations:

• tables of energy values for special geometries (commonly calculated within
the Born-Oppenheimer (BO) approximation)
• in some program systems (e. g. CADPAC, GAUSSIAN94, etc.): 1st, 2nd
and higher derivatives of the energy [3, 4]
• in general it is still customary to calculate single energy values, which are
used for interpolation/extrapolation in order to construct a PES for a large
range of nuclear geometries

kind of the dynamics to be studied:

• whether a relatively small area is needed (e. g. for spectroscopy of the
lowest energy levels of a small molecule)
• or an extended area is required (e. g. in the case of reactions including the
transition state region (Fig. 2), photodissociation, spectroscopy of bound
states near the dissociation limit).
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Figure 2: Different classes
of potential energy surfaces
in the vicinity of transition
states.
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• theory needed to calculate molecular properties from PESs is highly
developed [5, 6, 7, 8, 9, 10, 11, 12] and computationally expensive

• one has a given set of data (i. e. atom positions, interatomic distances,
internal coordinates, etc. xi and potential energy values yi) which one
wants to condense by fitting it to a model that describes the potential
energy surface and that depends on adjustable parameters

- model is simply a convenient class of functions, such as polynomials,
Gaussians or other specific functions and the fit supplies the appropiate
coefficients

• choice:
- use functions that perform well in a local region
- use global functions that cover a large region with “fairly good” accuracy

– Ralph Jaquet, University Siegen – 5



• local approximations:
interpolating functions (splines), expansions in polynomials or rational
functions, etc.

• local and as well global approximations:
functional forms that are special and simulate a special topography of the
PES (e. g. Morse functions, separation of the many body potential into
two-body, three-body, etc.-interactions)

- global methods: the function depends on the entire set of data
- local methods: a restricted number of data values are used
- or PES is searched only along the reaction path: reaction path-potential
- intrinsic reaction coordinate (from the transition state to the product or
the reactant configuration)

• interpolating functions: can cover exactly or approximately the given data
points
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• the basic approach in all cases is usually the same:
- one chooses a ”merit function” that measures the agreement between the
data and the model with a particular choice of parameters
- in case of a ”least-squares” Ansatz small values represent close aggreement
- parameters of the model are adjusted or optimized to acieve a minimum in
the merit function, yielding the “best-fit” parameters. - adjustment process
is a problem in minimization in many dimensions (linear or non-linear
least-squares methods (LLS, NLLS: [13, 14, 15, 16])

• experimental data: for the description of PESs one has to take into
account that these data are generally not exact and that one has to deal
with measurement errors (i. e. systematic errors, random errors, etc.)

• important to distinguish between the terms accuracy and precision

• typical experimental data never exactly fit the model that is being used,
even when that model is correct
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• if each data point has its own, known standard deviation or ”measurement
error” the fitting equation will be modified by this dependency (called
weighting factor)

- the same is true when we deal with calculated data for the fit of the PES

• theoretical data, i. e. calculated eigenvalues, are not statistical; they are
numerically ”exact” within each quantum chemical method (as long as
internal parameters are correctly chosen)

- it is not easy to assign error bars to the theoretical data depending on the
theoretical method and on the geometrical position on the PES

• except in few cases the theoretical data deviate from the true value by
more than the standard deviation resulting from the fitting procedure; the
resulting surface can be valued as a “rough” description of the true PES,
although it might be the best available result
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• if one fits data points (xi, yi) to a model one tries to predict a functional
relationship between independent variables xi and dependent variables yi

• the independent variable xi is not necessarily a physically meaningful
coordinate, but may be a linear combination of coordinates • if the
coordinate is a distance, R, many possible choices for the independent
variable have been proposed:
R, (R−Re)/Re, (R−Re)/R, 2(R−Re)/(R +Re), etc. (Re= equilibrium
distance)

• it is not uncommon in fitting data to discover that the merit function
gives comparatively good results for different parameter values out of the
parameter space and that different model-functions predict nearly the same
results for the merit function
- how is one sure that there is not a very much better fit?
– this kind of problem is generally quite difficult to solve (“Modeling of
Data” [80])
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• if we perform the fit with theoretical data, all functions must fulfill some
common features:

- the given energy values must be reproduced as accurately as possible

- the interpolated values have to be “meaningful”

– “meaningful” is not easy to specify:
– (a) mathematical relations
– (b) “chemical and physical” intuition and experience

• depending on the way of fitting the data, the outcome of the dynamics
calculations will be influenced and thus can lead to different findings
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Fit procedures should supply:

(a) parameters for the functional forms

(b) error estimation of the parameters

(c) a statistical measure of the quality of the fit

- if (c) is bad, the results in (a) and (b) can be classified as useless

- if the results “look good” (e. g. small variance, “chi by eye”) only part (a)
will be performed and the parametrization will be accepted
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Summary of the criteria for interpolating functions [17, 18, 19]:

(i) an accurate fit should be achieved with the smallest number of data
points

(ii) the fit should converge to the “true” PES if more data are added

(iii) the interpolating function should indicate where more data are needed

(iv) The functional Ansatz should have a minimal amount of special
character

(v) the interpolating functions and derivatives should have, if possible, a
simple algebraic form

(vi) the correct symmetry properties of the given system should be
represented
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(vii) the fit should represent the “true potential”, where experimental or
empirical/theoretical data are given

(viii) the fit should be “physically meaningful” where no experimental or
theoretical data are given

for studying reactions it is further necessary:

(ix) the fit should smoothly connect the interaction area and the asymptotic
regions
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overviews:(skip this part)

till 1985 is given by Sathyamurthy [20] (especially reactive and nonreactive
potentials for two- to four-atomic molecules)

Carter [21] and Schatz [22] on analytical PESs for three- and four-atomic
molecules

Searles and von Nagy-Felsobuki [23, 24, 25] on local and global functional
forms with detailed comparisons for different fits

Varandas [26, 27, 28] on inter- and intramolecular potentials (with “double
many body expansion”)

Mezey [29] on the fitting with splines, polynomials and trigonometric
functions (one chapter of his book “Potential energy surfaces”)

Law and Hutson [30] on interactive non-linear least-squares fitting of the
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parameters of physical models

book of Murrell and co-workers [31] on “molecular potential energy
functions”: overview about PESs, topographies, choice of coordinates
and fitting

book of Hirst [32]: relations between PESs and molecular structure and
reaction dynamics

asymptotic factorization of the PES based on the global topography of
molecular potentials is given in [33]

more information on topographies can be obtained from [1, 34, 35, 36]

characteristic features of the potential energy for chemical reactions (ab
initio and semiempirical determination) are given in [37, 38, 39, 40, 41]

relationships between minimal energy paths, reaction paths, intrinsic
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reaction coordinates and gradient extremals in [42, 43, 44, 45]

use of sensitivity analysis in [46]

use of derivatives [3, 4] in a multivariate Taylor expansion of the PES in the
vicinity of a reaction path or near equilibrium geometries [47, 48, 49, 50, 51]

work of Berry [52, 53, 54], especially on clusters [55], multidimensional PES
and related questions are discussed:

(a) how to find important regions

(b) how the landscape depends on elementary characteristics of the
parameters of the potential

(c) how certain dynamical properties are consequences of the geography of
the PES, etc..
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- PESs and their use in dynamics are presented in [38, 56, 57, 58, 233, 59,
60, 61, 63, 64, 65, 66, 67, 68, 69]

- vibrational PESs for ground and excited states is given by Laane [70]

- general correlations between data regression and error analysis are discussed
in [15] and [71]

- EC-workshop (1995): devoted to the calculation of PESs [72]

further discussion in the literature:
- empirical force field methods [73] needed in molecular dynamics or Monte
Carlo simulations [74]
- different attempts for the formulations of the complete dynamics of
electrons and nuclei of a molecular system that eliminates the necessity of
constructing PESs:
- END-method [75, 76], Car-Parinello-method [77] or so-called ab initio
molecular dynamics simulation techniques [78]
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2 General functional forms

2.1 General procedure

brief overview to proceed in modeling data for a PES:

• identify independent variables or coordinates (there are in general several
possibilities) to prevent numerical problems with linear dependencies in
optimizing the parameters of the model function

• the data points have to be examined for their correctness (e. g. energy
values may be not converged or belong to a different electronic state)
[20, 25]

• plotting of the energy points as a function of one or two coordinates
might help to find erroneous input data
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question:

on which variables (coordinates) the potential does depend strongly or
weakly?

how carefully the optimization of the parameters with respect to an
expansion in a specific variable has to be performed?

the data range of the independent variables has to be identified

it has to be checked how dense or sparse the number of data are
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consequences:

depending on this information and on the qualitative behavior of the
potential one chooses functions which can describe correctly a small or large
range in coordinate space

one selects functions like exponentials or trigonometric functions,
polynomials, etc., which can simulate the potential shape within the number
of given discrete points

one has to decide for a local or global Ansatz
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• if a linear Ansatz is given or the functional form is linearized from a
more general non-linear Ansatz, the data (with the option to use physically
or numerically motivated weighting factors) will be fitted with a linear
least-squares procedure

- numerically, this means a solution of a set of linear equations which
can be performed with an additional proof of quality using “singular value
decomposition” (SVD) [79, 80]

- otherwise one uses non-linear concepts, where within the NLLS-method the
model function is optimized iteratively and where the starting parameters
can be taken from a linearized solution
- for NLLS procedures one has to make sure that a variation of the starting
parameters does not lead to different results

• in case of doubts one has to use constraints for the range of values of the
fitting parameters
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How can one recognize the quality of the fit?

(a) one can use the residual-method [81], calculate the mean square
deviation σ (i. e. difference between the fitting function and the original
input data) and perform a χ2-test [15]

- however, these tests do not always characterize the quality of the fit, even
if the variance is small

- potential energy values V cannot be regarded as “statistical”

(b) help by graphical representations of the residual potential ∆V :
- V versus ∆V : always the same sign or not, do the residuals occur in
clusters ? (bad!)
- plot of the fitted potential for all possible coordinates (or combinations of
these)
– are minima or maxima are created in those areas where not enough data
points are given?
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- changing the coord. system: additional weakness of the fit can be shown

- the investigation of the dynamics will show if the known experimental or
theoretical results are reproduced satisfactorily

- if the results depend strongly on the input for the PES-fit, a sensitivity
analysis [61] is needed
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2.2 Interpolating functions (IF)

• interpolating functions [25, 80, 82, 83] are functions which at the given
data points {xi, yi} reproduce the values yi for the independent variables xi

• for some functional types IF exactly reproduce the derivatives

- this does not imply that the quality of the fit is maintained at any
intermediate point

• the total interval for approximation is divided into subintervals, where the
so-called knots, nodes or points are defined

• within each subinterval an approximation with a relatively simple function
is performed

• the order of interpolation in an interpolation scheme is given by the
number of points minus one
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• in general smooth curves are better described by interpolation of high
order; curves that change “abruptly” are better described by low order
interpolations

• typically, three- or four-point interpolations are used. Irregularities in the
interpolation can be found from graphical representations

• commonly, Hermite and Lagrange functions and cubic splines (and the
variant of Akima) are used as interpolating functions

• splines are a compromise between polygon-line and an interpolating
polynomial of higher order
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Lagrange interpolation (LI) with order N [80]:

V (x) = (x−x2)(x−x3)...(x−xN)
(x1−x2)(x1−x3)...(x1−xN)y1 + (x−x1)(x−x3)...(x−xN)

(x2−x1)(x2−x3)...(x2−xN)y2 + · · ·+
(x−x2)(x−x3)...(x−xN−1)

(xN−x1)(xN−x2)...(xN−xN−1)
yN (1)

energy yi given at the position xi

Hermite interpolation (HI) with order N [80]:

V (x) =
N∑

j=1

(yjFj(x) + gjGj(x)) (2)

energy yi and the first derivative gi of the energy with respect to x given at
the position xi

F and G are formfunctions depending on all positions xi
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Cubic spline interpolation (SI) with order 3 [80]:

V (x) = yi + ai(x− xi) + bi(x− xi)2 + ci(x− xi)3 (3)

ai, bi and ci are functions of {xi, yi}

Akima interpolation (AI): similar to cubic spline, can be also used for
irregular grids [84, 85, 86]
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Advantages and disadvantages:

• interpolating functions are normally used for a local interpolation using
an equidistant discretization

• extrapolation and the use of non-equidistant grids can be problematic

• interpolating functions of high order supply quite different results, if the
original data are modified a little bit (“noise”); sensitivity analysis might be
helpful [61]

• comparison of different IFs can be summarized as follows (H2: [87]):
3rd order expansions did not introduce irregularities, whereas 5th order
expansions introduced errors

• SI and HI are more accurate with respect to energy than LI. SI has a
distinct advantage over HI since knowledge of derivatives is not required
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• cubic SI is reliable in the representation of the “true” potential

• lack of accuracy for SI depends on the number of points; in case of too
few points this leads to topological errors

Alternative: a more localized interpolation of Akima; for 3D (ABC-system)
there might be problems with SI in case of the wrong choice of coordinates
(the triangular inequality must be fulfilled); the L-splines avoid spurious
oscillations [88]
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Examples:

(a) 1D cubic spline fit to a Morse potential [89] for H2: at least 14 nodes
(i. e. data points) are necessary (see table 1) [25] !

Table 1: 1D cubic spline for H2 in comparison to the exact Morse-Ansatz a

nodes σ(V/eV )/10−3 ∆1(V/eV )/10−3

10 3.1 —
12 0.8 2.3
14 0.5 0.3
16 0.2 0.3
20 0.1 0.1

a σ: variance, ∆1: absolute variance of successive differences, fit of the
Morse function in the range 0.5 ≤ R ≤ 2.5 Å.
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(b) Li2: cubic spline (good!) for spectroscopic investigations ( [23], see
table 4.2 in [25])

(c) 3D-splines, combined with Morse functions for classical trajectories [89].
Problems with 3D-splines: see [90, 91]

higher dimensional interpolations: see [80]

discussion of different spline variants: see [82]
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2.3 Power series expansions and rational functions

expansion of the PES in a polynomial form:

V (x1, .., xf) =
N∑

i1,..,if

ai1,..,ifu
i1
1 ...u

if
f , (4)

ui are functions of the xi (e. g. internal coordinates: distances, angles, etc.)
for f degrees of freedom and different orders ij.

contrary to the interpolation one has more given values for Vi than
parameters aj, so the use of LLS or NLLS in the fit is necessary

the functional form can be used for extrapolation
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PES for a triatomic molecule (R1, R2, R3) in a power series expansion:

V (R1, R2, R3) = V0 +
∑3

i C
(1)
i xi +

∑3
i

∑3
j C

(2)
ij xix

j +
3∑
i

3∑
j

3∑
k

C
(3)
ijkxixjxk +

∑3
i

∑3
j

∑3
k

∑3
l C

(4)
ijklxixjxkxl + · · · (5)

different choices for the expansion variables xi have been proposed

rational expansion: quotient Pm,n(R1, R2, R3) (Padé–approximation)

V (R1, R2, R3) = Pm,n(R1, R2, R3) =

∑m
i=0

∑m
j=0

∑m
k=0 aijkx

i
1x

j
2x

k
3∑n

i′=0

∑n
j′=0

∑n
k′=0 bi′j′k′x

i′
1xj′

2 xk′
3

, (6)

(i + j + k) ≤ m, (i′ + j′ + k′) ≤ n

two polynomials with different orders m and n
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What is a reasonable choice for xi?

popular forms proposed by Dunham [92], Simons-Parr-Finlan (SPF) [93],
Ogilvie [94], Thakkar [95], Huffaker [96] (Re = equilibrium distance):

Dunham: x = (R−Re)/Re

SPF: x = (R−Re)/R
Ogilvie: x = 2(R−Re)/(R + Re)
Thakkar: x = 1− (Re/R)−a−1, a = “Dunham-constant”
Huffaker: x = 1− e−a(R−Re)

(7)

- advantages and disadvantages of the different expansions become more
apparent when the convergence properties [97, 98] and the asymptotic
behavior are discussed [93, 94, 95, 97, 98].

What are the relations between the different choices for xi?
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Dunham-SPF-Ogilvie:

xOGILV IE
i =

2xSPF
i

2− xSPF
i

=
2xDUNHAM

i

2 + xDUNHAM
i

=
2(Ri −Re)
Ri + Re

(8)

Nagy-Felsobuki and co-workers [23, 24, 25, 99] have laid down some “rules”
for the power series expansion:

(1) the polynomial expansion used should have a “quantum mechanical
basis”

(2) real plane convergence properties should suggest a reasonable (in a
physical sense) region of acceptability

(3) the fit should be consistent with respect to accepted physical properties
and should show a smooth behavior in case of monotonically increasing
repulsive potentials
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(4) the error of the fit should be within the accuracy of the ab initio points

(5) evaluation of the expansion coefficients should be systematic and
amenable to a regression analysis

(6) one should prefer an analytical representation, which can accomodate
several different types of experimental data
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criterion 1: fulfilled; also for Morse-type expansion variables [95]
criterion 2: problematic
Dunham expansion: range of convergence 0 < Ri < 2Re [97], bad for large

R (e. g. vibrational energy levels near dissociation limit)
SPF-expansion: range of convergence: Ri > 0.5Re [98], shows

oscillatory behavior for small values of R [93]
Ogilvie-expansion: valid for the complete range 0 < R < ∞ (problems at

R=0 and R=∞ [98])
Huffacker (Morse): good convergence properties [95, 96, 100], good for

triatomics too [23, 24, 101, 102]
criterion 4: can be normally fulfilled, difficulties in the most recent

calculations for highly accurate ab initio points of H+
3

[351, 352]
criterion 5: least square fit (see eq. 9), χ2-analysis for N data

points
criterion 6: fulfilled; (Dunham, SPF and Ogilvie)- force fields are

used for different experimental data
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Minimization of the sum of least-squares (VPS= power series expansion,
Vexact= exact value):

χ2 =
N∑

m=1

(V PS(x1m, x2m, x3m)− V exact(x1m, x2m, x3m))2 (9)

but: smallest χ2-value does not necessarily mean the best
fit

criterion 3: polynomial expansions are consistent with respect to
the expected description of physical properties. There
are problems with polynomials of high degree

• Ogilvie tried different expansions (Dunham, SPF, etc.) for HF [94]:
- with the Ogilvie-Ansatz he needed 5 terms in the expansion, using the
Dunham-Ansatz comparable accuracy could be reached with 8 terms
- polynomials of high degree produce oscillations and singularities
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Help: “Singular value decomposition SVD”: this damps the contributions
of coefficients for expansions of higher order

Examples:

• 3D, LiH+
2 [24]:

- different choices of xi, the polynomial expansion of 6th degree with
the Ogilvie-Ansatz combined with the SVD-method proved to be the best
method

• Murrell et al. [103, 104]:
- diatomic molecules: the use of rational functions is not useful for the
whole R-range; singularities might occur in the numerator or denominator
depending on the order of the polynomial; introduction of the factor (Ri)−1

leads to better results, nevertheless singularities do appear
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• Padé-approximations:
- multidimensional cases have not been sufficiently investigated
- the Ansatz is flexible, but singularities may still occur (LiH+

2 : modified
Padé-approximant [24])

• Downing et al. [105]: - potential energy values behave like roots of
characteristic polynomials of a secular equation
- the method yields good results, but needs many input data for increased
dimensionality - in case of extrapolation, the results are reasonable

further application: NO2 [106].
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2.4 Many-body expansions

• early work by London, Eyring, Polanyi and Sato (LEPS) [107]

• “diatomics in molecules (DIM)” -method Ellison (1963) [108]

• reactivated by Murrell et al. [31, 109, 110, 111, 112]

- used this variant first for the fitting of spectroscopic data of triatomic
molecules
- today different variants of this Ansatz are employed, which are not limited
just to triatomic molecules
- it is possible to describe potentials with a complicated topography, several
minima with different symmetries
- the repulsive, attractive and asymptotic range of the potential can be
adapted differently - suitable as global fits for dynamic calculations in the
full range of coordinates
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Literature: [21, 31]

- large number of parameters, enough flexibility to fit the desired property
with proper accuracy (energy, geometry and force constants at the
minimum) - asymptotic two-body interactions can be fixed experimentally
or by ab initio methods
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the potential for a triatomic molecule can be decomposed (one-, two- and
three-body terms):

V (R1, R2, R3) = V
(1)
A + V

(1)
B + V

(1)
C + V

(2)
AB(R1) + V

(2)
BC(R2) + V

(2)
CA(R3)

+V
(3)
ABC(R1, R2, R3) (10)

for the ground state: the monoatomic terms V (1) can be set to zero, the
two-body terms V (2) describe the diatomic potentials formed by adiabatic
dissociation of the molecule ABC

true three-body terms are written as products of polynomials P and a range
function T :

V
(3)
ABC = P (x1, x2, x3)T, T =

∏
i=1,3

(1− tanh(γixi/2)) (11)
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P (x1, x2, x3) =
∑
ijk

Cijkx
i
1x

j
2x

k
3, i + j + k ≤ n, xi = Ri −R0

i (12)

Cijk, γi, R0
i : fitting parameters

- for negative xi the function T remains finite, whereas it becomes zero for
large positive xi; the corresponding diatomic potential remains

- symmetry properties can be considered in form of proper symmetry adapted
coordinates
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Sorbie and Murrell (SM) [109]: original proposal to fit spectroscopic data
for triatomic molecules

different approaches developed by the “Murrell-school” [26, 31] and other
authors [113, 114, 115]

different functional forms tested for SO2: [110, 111, 112]

fitting of P in a linearized form (for different combinations of γi):

[Vtot − VAB − VBC − VCA] /
∏

i=1,3

(1− tanh(γixi/2)) = P (x1, x2, x3)

(13)
full fit will be performed with a NLLS-method
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Difficulties:
SM-approach:
- known to produce small humps and wells in those regions, where not
enough data points are given
- by adding gaussian functions (addition/subtraction) these errors can be
reduced
- Garcia and Lagana [116] fitted first a three atomic potential term and
after that matched the complete potential Ansatz to the asymptotically
correct diatomic limits

Particularities:
- possible to build in these functional approaches a special non-analytical
behavior: for H3 with Jahn-Teller non-analyticities in the ground state [117];
two PE surfaces of H3 near the conical intersection [26, 28, 118, 119]

- SM-approach: used for the fit of multi-valued PESs (ground and excited
state)
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- diabatical fit to SM-functions, nonadiabatic interactions to trigonometric
functions: calculation of the roots of 2x2 determinants (p. 50 in [20])
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Which functional forms V (R1, R2, R3) are generally taken in case of
many body expansions?

V (R1, R2, R3) =
3∑

i=1

V
(2)
i (Ri) + V (3)(R1, R2, R3) (14)

SM [109]:

use for V (3) the expression in equation (11).

Examples: different molecules in Ref. [20, 21, 31].
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LEPS (H +H2 → H2 +H): useful as an interpolatory function to connect
reactants and products

V (R1, R2, R3) =
3∑

i=1

Qi(Ri)−
1
2

√√√√ 3∑
i<j=1

(Ji(Ri)− Jj(Rj))2

Qi(Ri) =
1
2
[
1E(Ri) + 3E(Ri)

]
, Ji(Ri) =

1
2
[
1E(Ri)− 3E(Ri)

]
(15)

1E(Ri) = 1DiXi(Xi − 2), Xi = e−βi(Ri−Re
i ), 3E(Ri) = 3DiX

′
i(X

′
i + 2), X ′

i = e−β′i(Ri−Re′
i )

3Di =
1
2
(1− Si)
(1 + Si)

1Di

(Si: Sato-parameter)
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DIM (based on valence bond concepts): Diagonalization of a DIM-
Hamiltonian, calculations of ground and excited states are possible.

1st application: collinear reaction He + H+
2 → HeH+ + H: [120, 121, 122]

V (R1, R2, R3) = Q1 + Q2 + Q3 −
√

(J1 − J3)2 + J2
2

Qi(Ri) =
1
2
[
1E(Ri) + 2E(Ri)

]
(16)

Ji(Ri) =
1
2
[
1E(Ri)− 2E(Ri)

]
E(r) = pDe−β(R−R0)(2 + pe−β(R−R0))

(p = ±1: for repulsive (1) and attractive (−1) interaction)
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“extended” LEPS and residuum (NeH+
2 : [123, 124]):

V (3) = V
(3)
LEPS +

M∑
lmn=0

almn
1

Rm
2

(
1

Rl
1R

n
3

+
1

Rn
1Rl

3

) (17)
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Joseph and Sathyamurthy [114] ( NeH+
2 : [125, 126]):

V (3)(R1, R2, R3) =

 M∑
i,j,k=0

Cijkx
i
1x

j
2x

k
3

 ∗ (18)

(
1− tanh

(
γ1(x1 + x3)/2

))(
1− tanh(γ2x2/2)

)
,

j + k + l ≤ M, R0
1 = R0

2 = R0
3

V
(2)
i (Ri) = −De

(
8∑

n=1

cnxn−1
i

)
e−c9xi (extended Rydberg)

xi = Ri −R0
i (19)
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Schinke [113] (NeH+
2 : [125, 126]):

V (3)(R1, R2, R3) =

 M∑
i,j,k=0

Cijkx
i
1x

j
2x

k
3

[(1− tanh(γ1(x1 + x3)/2)
)]

∗
{

(1− tanh(γ2x2/2))e−α(R1+R3)
2
}

, j + k + l ≤ M

V
(2)
i (Ri) = −De(

8∑
n=1

cnxn−1
i )e−c9xi

xi = Ri −R0
i (20)
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Aguado and Paniagua [115] (NeH+
2 : [125, 126]):

V (3)(R1, R2, R3) =
M∑

i,j,k=0

Cijkx
i
1x

j
2x

k
3,

xi = Rie
−ωiRi, j + k + l 6= j 6= k 6= l, j + k + l ≤ M

V
(2)
i (Ri) =

coe
−βiRi

Ri
+

N∑
n=1

ciη
n
i , c0 > 0, so that lim

Ri→0
V

(2)
i →∞

ηi = Rie
−εiRi (21)
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extensions of the many-body expansions of Murrell et al. [31]:

Varandas [26, 127]: many-body expansions for van der Waals and stable
molecules

Aguado et al. [128]; H4 with four-body terms

further applications: (H2O)2: [129], HeH2: [131], NH3 + H → NH2 + H2:
[132], Li + HF: [133], Be + HF: [295], H+

4 : [134].
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Interpolation without “fixed” functional forms

Use of genetic algorithms and neural networks.
• Sumpter and Noid [135]:
- PES for macro-molecules by using a neural network to learn the relationship
between vibrational spectra and a multidimensional PES

- the neural network is capable of mapping the vibrational motion from
spectra onto a fully coupled PES with relatively high level of accuracy

- 51 different examples for the g(ω) spectra corresponding to a polyethylene
molecule have been used for training

- the general ability of the neural network to make predictions for data, not
used in the training set, was examined by calculating the relative error for
potential parameters that were unknown to the neural network

– maximum error was 3.9 % with the majority being near 0 %
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• Blank et al. [136]:
- use of feed-forward neural networks to model global properties of PESs
from information available at a limited number of configurations
- data are error-free and geometries are selected from uniform grids of two
and three dimensions
- the neural network model predicts the potential within a few hundredths
of a kcal/mole at arbitrary geometries
- method has been tested to fit data from an empirical potential model of
CO adsorbed on Ni(111)
- accuracy and efficiency have been demonstrated in quantum transition
state theory rate calculations for surface diffusion using a MC/path integral
method
- sophisticated test: interaction of H2 with Si(100)-2 x 1 [136] in 12D at
750 geometries (DFT)
- predicting the potential at geometries outside the training set: mean
absolute deviation of 2.1 kcal/mole
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• Rossi and Truhlar [137]:

- genetic algorithm to fit a set of energy differences (EAM1−EMP2) yielding
a set of specific reaction parameters (SRP) for the reaction Cl + CH4

- small number of ab initio points along a distinguished-coordinate path
were used as input

- the surface is well fitted both on and off the reaction path over a range of
energies three times wider than the input range
– costs for the AM1-SRP surface is 8000 times lower than for the reference
ab initio surface

- the PES is well suited for direct dynamics calculations
- Cl + CH4: only 13 ab initio points (as a reference) along the reaction path,
fit for a wide range of energies with an absolute error of 1.08 kcal/mole
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Interpolation for a special reaction path.

• Jasien and Shepard [60] (Shepard interpolation):

- general technique that provides a systematic means for fitting polyatomic
PESs

- use of both ab initio energy and gradient data to fit the surface along an
N-dimensional reference curve connecting stationary points

- the reference curve may be modified iteratively during the course of fitting

- a particular iteration can specify a new set of points which are to be
calculated to improve the accuracy of the surface (tested for a model PES)

• Truhlar et al. [59]: review about PESs for polyatomic reaction dynamics,
global and reaction path potentials
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Use of the Shepard interpolation.

• Ischtwan and Collins [138], Jordan et al. [139, 140]:

- moving interpolation technique: provides an accurate representation of the
PES by using ab initio energies, energy gradients, and second derivatives
and even third derivatives [140], calculated at dynamically important regions

- the interpolant of the energy and its derivatives converge to the exact
value with increasing number of data

- the algorithm neither assumes a functional form for the global surface [31]
nor is a numerical “surface fitting method”

- the method employs classical trajectory calculations of the reaction
dynamics in the PES construction process: NH(3Σ−) + H2(

1Σ+) →
NH2(

2B1) + H(2S) [138, 141], OH + H2 → H2O +H [139]
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- the resultant surface is particularly appropriate for trajectory studies,
although the surface could be used in statistical reaction rate theories

– use in quantum dynamical studies: the quality might be restricted, because
only a special part of the PES near the “classical trajectory reaction path”
is known

- OH + H2 [139]: reaction probability may be accurately calculated using
approximately 200-400 data points to define the PES

• Nguyen et al. [51]:

- dual-level approach to represent PESs in which a very small number
of high-level structure calculations are combined with a lower-level global
surface, e. g. one defined by a NDDO-method (AM1) with specific reaction
parameters, to generate the potential at any geometry where it may be
needed
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- PES is interpolated with a small number of accurate data points (the
higher level) that are placed along the reaction path by using information
on the global shape of the potential from less accurate calculations (the
lower level)

- possibility to use in addition gradients or Hessians

- dual-level interpolation can offer cost savings over single-level schemes

- the accuracy of the interpolation is lower when the potential values are
predicted at points significantly removed from the reaction path

- OH + H2 → H2O + H: a family of approaches based on the Shepard
interpolation of data along distinguished-coordinate reaction path (single-
level, dual-level, use of genetic codes for the NDDO-SRP parameters)
hasbeen tested
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- depending on the number of high-level calculations that are affordable and
the type of dynamics, one or another combination of interpolation choices
are preferable

- OH + NH3 → H2O +NH2 [142]

- improved version of a dual-level direct dynamics method for reaction
rate calculations with inclusion of multidimensional tunneling effects and
validation for the reaction of H with trans-N2H2 [143]
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Roots of multidimensional polynomials.

Downing et al. [105, 144]:

- procedure for interpolation and extrapolation of multidimensional functions
by a root of a low-degree polynomial

- idea: the fit of a PES results from solutions of exact or approximate
Rayleigh-Ritz variational problems

– eigenvalues are given by a root of a characteristic polynomial of a usually
hermitian matrix

– elements of hermitian matrix are analytical functions of the geometrical
values q
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- interpolation procedure: one assumes a simple parametrized functional
form, a truncated Taylor series that approximates matrix-elements

– of the electronic Hamiltonian Hkl(q); k and l define different electronic
states)
– of the electronic energy Ekl(q) or other terms

- SCF surfaces for MgH2, HCN, H3 and H2O

- method can be used for extrapolation
- problems in handling ill-conditioned equations
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Multidimensional Voronöı-step representations.
Suhm [145]:
- fully anharmonic vibrational ground states of systems like (HF)2 or (HF)3
- method that is based on the diffusion quantum Monte Carlo formalism
that does not require an analytical representation of the PES
- static variant: the algorithm exploits a pre-existing data set of potential
energy points - dynamical formulation: iteratively samples arbitrarily sized
batches of new optimal nuclear configurations
- in this approach the analytical potential surface is replaced by an irregular
distribution of configuration points
- the PES is given only at a few number of points N
– the value of the potential energy VL at the local site L is defined
as the weighted average potential energy of the surrounding reference
configurations R
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– the weight is defined by a rapidly decaying function D(L,R)

D(L,R) =
∑
i,j

aij(
1

λ2
ij

− 1
ρ2

ij

)2 (22)

-ρij is the distance from site i to site j in the reference configuration R
- λij is the same quantity in the local configuration L and aij is a scaling
factor

the interpolation for the potential at the local site L

VL =
∑N

i=1 D(L, i)−kVi∑N
i=1 D(L, i)−k

, (23)

k influences the weighting for the contribution of each reference
configuration
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- Voronöı step representation (Fig. 3) is not optimal for molecular dynamics
calculations

- it is well suited for a Monte Carlo algorithm

• Suhm [146]: analysis of three contributions to the fitting bias: node bias,
interpolation bias and extrapolation bias and their global effect on a given
property calculation
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Figure 3: Illustration of the principle of Voronöı step representation (VSR)
for a two-dimensional (x,y) harmonic Potential V . In (a), 19 reference
configurations i (stars) and associated lines Vi are shown. The dashes mark
the contour of the average ensemble energy V̄ . (b) illustrates the interpolation
VL =

∑19
i=1 D(L, i)−kVi/

∑19
i=1 D(L, i)−k with D(L, i) = (xi−xL)2+(yi−yL)2

and k = 4, using the contour lines defined in (a). (c) shows the limit k →∞,
i. e. VSR with VL = Vi, where i is the reference configuration with smallest
D(L, i). (Suhm, M., Chem. Phys. Lett., 214 (1993) 373).
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Reproducing kernel Hilbert space theory.
• Ho, Rabitz and co-workers [147, 148]:
- general interpolation method based on the reproducing kernel Hilbert
space (RKHS) theory

- H+
3 : [147], O(1D) + H2: [148]

- the reproducing kernel of a D-dimensional tensor-product Hilbert space is
a product of one dimensional kernels, which itself are made of appropiate
functions with arbitrary coefficients

– the method is explained for the case that the data points are calculated
on a D-dimensional grid [149]

– the ideas can also be applied to the general case, where the points are
placed arbitrarily

- N(2D) + H2: 16× 16× 16 grid, root mean square error of 1.32 kJ/mol
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3 Specific forms for diatomic and polyatomic systems

• fitting PESs with the help of different expansions for the single degrees of
freedom in diatomic - polyatomic molecules

• dependence on the distances and angles, different concepts are meaningful

• considerations, as they are made for single molecules in the gas-phase,
can be transferred on descriptions of intermolecular interactions in fluids or
solids.

• special functional approaches for intra/intermolecular interactions in single
molecules and complexes

• recipes how to perform fitting with data points for PESs explicitly

• further detailed informations: Sathyamurthy [20].
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One independent coordinate
Potential with one minimum

standard method for the expansion of functions (e. g. the potential) in one
variable:

- Legendre-, Laguerre- or Hermite-polynomials
- functions are chosen on the basis of the physical problem (few terms
needed)
- near the equilibrium distance Re: potential behaves like an anharmonic
oscillator V = kx2/2 + ax3 + · · · , x = R−Re, k = (d2V/dR2)R=Re

expansion has been utilized by Dunham [92]:

V (x) = d0x
2

(
1 +

∞∑
i=1

dix
i

)
(24)
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for x the expansions by Dunham [92], Ogilvie [94] and others can be used
(see eq. (7))

- Dunham-Ansatz is unsatisfactory for R →∞
- SPF-Ansatz is bad for R → 0 (see examples in [94])
- Ogilvie uses the F-test [150] (for RKR data) as a criterion of quality
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generalized expansion (different functional forms for f(x)):

V (x) = d0f
2(x)

[
1 +

∞∑
n=1

dnfn(x)

]
(25)

Thakkar [95]:

f(x) = sgn(p)
[
1− (1 + x)−p

]
, x = (R−Re)/Re, (26)

sgn(p) = ±1, for p ≷ 0

– Ralph Jaquet, University Siegen – 74



Engelke [151]:

f(x) = sgn(p)
[
1−

(
(1 + x + β)/(1 + β)

)−p
]

(27)

(β, p) = (0,−1) Dunham
(0, 1) SPF
(0, p) Thakkar
(1, 1) Ogilvie

(28)

for β > 0, p > 0: f(x) has no singularities in [0 ≤ R ≤ ∞].

Huffaker [96]:

f(x) = 1− e−ax, x = R−Re (Morse-like) (29)
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Mattera [152]:
f(x) = 1− (1 + γx/p)−p, γ > 0 (30)

high flexibility of the leading term:

Vo(x) = d0

{
1− [1 + γx/p]−p

}2

(31)

(Lennard-Jones and Morse potentials are special cases, see (33) and (35))

Surkus [153]: use of formula (24) with

x = sgn(p)(Rp −Rp
e)/(Rp + nRp

e) (32)

(n, p are real numbers; Dunham, SPF, etc. are special cases)
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Empirical functional forms with minimal number of parameters:

Lennard-Jones [154]:

V (R) = 4D
[
(σ/R)m − (σ/R)n

]
, m = 12, n = 6 (33)

D is the well depth and σ is defined by V (σ) = 0.

Buckingham [155]:

V (R) = Ae−αR −BR−n, n = 6 (34)

A and α can be calculated from lnV at short distance;
problem: limR→0 V (R) = −∞
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Morse [156]:

V (R) = D
[
e−2β(R−Re) − 2e−β(R−Re)

]
(35)

Varshni [157]:
V (R) = D

[
(Re/R)2m − 2(Re/R)m

]
(36)

higher terms of the dispersion forces (R−n, n ≥ 6): more flexibility (R−n

terms are not linearly independent):
HFD-Ansatz (Hartree-Fock-dispersion)

V (R) = Ae−αR −BR−6 − CR−8 −DR−10 − · · · (37)

Ahlrichs [158, 159], Tang and Toennies [160]: HFDD-Ansatz (Hartree-Fock
with damped dispersion)

V (R) = Ae−αR − (C6R
−6 + C8R

−8 + C10R
−10)F (R),
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F (R) = e−[1.28(Rm/R)−1)2], R < 1.28Rm (38)

= 1, R ≥ 1.28Rm

F (R): damping function, Rm: Re of the undamped part of V (R)

rare gas – rare gas, halide systems: [161, 162]

Meath et al. [163]: similar to formula (38)

V (R) = [1− γ(1 + 0.1R)]E(1)
C − [C6F6(SR)R−6 + C8F8(SR)R−8(39)

+C10F10(SR)R−10]G(SR)

G(SR) = (1 + 41.34e0.8588SR), with S = 7.82R−1
m (40)

Fn(SR): damping functions, E1
C: 1st order Coulomb energy
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Modifications of the Morse-Ansatz:
Hulbert, Hirschfelder [164]:

V (x) = D
(
1 + gx3 + hx4

) [
e−2βx − 2e−βx

]
, x = R−Re (41)

Schubert, Certain [165]:

V (R) = D
{

(Re/R)2e−2β(Rp−Rp
e) − 2(Re/R)e−β(Rp−Rp

e)
}

(42)

Kafri, Berry [166, 167]: formula (42) with β depending on R

β = β0(1 + F (x)), x = R−Re (43)

F (x) = A1e
−β1x x < 0

(A2 + A3x)e−β2(x−x0)
2

x ≥ 0
(44)

– Ralph Jaquet, University Siegen – 80



formula (42) with: Kuntz, Roach [121]:

Kuntz, Roach [121]: β = β0(1 + γx + δx2)Navati, Korwar [168]: β(R) = βeb((Re/R)2−1)+a(Re/R−1) (45)

“Extended-Rydberg”-functions (ER):
Murrell, Sorbie [169]:

V (x) = −D
[
1 + a1x + a2x

2 + · · ·
]
e−a1x, x = R−Re (46)

other functional forms: [170]. Fit parameters from linearizing V (using lnV )
or directly with NLLS. Hall, Okada [171, 172]: exponential transformation
of internal coordinates. Alternative: Lagrange-, spline-, etc.- interpolations
or combinations: “exponential-spline-Morse-spline-van der Waals” [19]
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Potentials with more than one minimum

symmetric double minimum (NH3: [173]; x coordinate for the umbrella
mode):

V (x) =
1
2
ax2 +

1
2
bx4 + V0e

−cx2
(47)

asymmetric double minimum [174]:

V (R) = D
{

1− e−B(R−Ra)
}2

+ Ae−C(R−Rb)
2

(48)

(Ra, Rb refer to locations of minima) Huffacker (distorted Morse-potential)

[175]:

V (R) = D(Y 2 +
nmax∑
n=4

bnY n), Y = 1− e−a(R−Re) (49)
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Eaker, Parr [176]: use of a modified Morse function (MM)

VMM(x) = De−aβx ± af(x)e−βx (50)

f(x) = (1− bx)e
1
2bx(2−bx), x = R−Re (51)

generalized Hulbert and Hirschfelder (He∗ - He) [177]:

V (x) = (D/(t− 1))
[
e−txQR(x)− te−xQA(x)

]
+ D′ (52)

x = β(R/Re − 1), QA,R(x) = 1 + qA,R
4 x4 + qA,R

5 x5 (53)

For t = 2, D′ = 0, qA,R
4 = qA,R

5 = 0 : V = VMorse

in case of humps in the potential curves as in case of a curve crossing:
fitting of the diabats and solution of a 2 × 2 determinant problem ( [178]:
BeH, BeF).
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Repulsive potentials

Anti-Morse (Sato [107]: 3Σ+
u (H2)):

V (x) =
1
2
D
[
e−2βx + 2e−βx

]
, x = R−Re (54)

Pedersen, Porter [179]:

V (x) = A
[
e−2βx + 2e−βx

]
, R ≤ 1.6a0 (55)

= b(R + c)e−αR, R > 1.6a0

Berces [180]:

V (x) = (D/α)e−2βx [1 + βx]2α (56)
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Kafri, Berry [166]:

V (R) = e−(a0+a1R+a2R2+a3R3+a4R4+a5R5) (57)

Varandas, Brandao [181]:

V (x) = AR−1e−bx (58)

Further examples: different functional forms for proton transfer potentials:
(H2O)2 - H+ - (H2O)2, (NH3)2 - H+ - (NH3)2 [182].
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Multi-valued potentials

if nonadiabatic interaction is substantial:
calculate the adiabatic surfaces V±

V±(R) =
1
2

[
V11(R) + V22(R)

]
± 1

2

([
V11(R)− V22(R)

]2
+ 4V 2

12(R)
)1

2

(59)
V11(R) and V22(R): diabatic states
V12(R): potential coupling between the states [183]
V11, V22 and V12: can be fitted individually

more general way: calculation of the roots of multidimensional polynomials
describing ground and excited states [105]
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Two and more coordinates: Non-reactive scattering
PES in higher dimensions:
- expansion in a polynomial like form
- for radial coordinates : different expansions possible
- angular coordinates: expansion in Legendre polynomials

for systems with few degrees of freedom special forms have been developed:
Atom (A) - linear rigid rotor (BC)

θ 

r 
A

B

C

R 

Figure 4: Jacobi coordinates for “atom – diatomic vibrotor” system
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potential for the collision of an atom in a 1S-state with a rigid rotor molecule
in a 1Σ or 1Π state [184, 185]
expansion in terms of Legendre polynomials Pλ (see Fig. 4)

V (R, θ) =
∑

λ

Vλ(R)Pλ(cosθ) (60)

- Vλ(R): fitted as explained before 3.1 (as V or lnV )
- spline- or Lagrange interpolation often do not result in sufficiently reliable
1st derivatives for quasi classical trajectories (QCT), but are good for
quantum mechanical calculations

Vλ(R) is calculated by numerical integration:

Vλ(R) =
(2λ + 1)

2

∫ 1

−1

Pλ(cosθ)Vλ(R, θ)d(cosθ) (61)
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- it is sensible to choose the points for θ as in a Gauss-Legendre-quadrature
otherwise a system of linear equations has to be solved (matrix-inversion)
for each value of R:

V (R, θi) =
n∑

λ=0

Vλ(R)Pλ(cosθi), i = 1, . . . , n (62)

How does one proceed?

- if the system is overdetermined (i. e. there are more data than Legendre
terms), a least-squares fit has to be performed.

- for weakly anisotropic systems: H2–He, short expansion (n=2) [186]

- for strongly anisotropic systems: CO2–Ar, long expansion (n=10) [187]

- alternative: numerical interpolation for irregular grids (Akima [85], Schagen
[188])
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- sequence of fitting: 1) angle, 2) distance
- changing the sequence can lead to different results
- different concepts have to be tried!

fitting for fixed angles can be tried: Ewing [189]:

V (R, θ) = A(θ)e−α(θ)R −B(θ)e−β(θ)R (63)

attention: one has to be careful that the fit does not produce wells and
humps and that the functions are continuous and go smoothly into each
other

other concepts for model potentials: Lösch [190], Gordon and Kim (electron
gas-potentials) [187, 191], comparison of different models [192]

applications: Table 2 in [20], O2-He: [193]
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Three variables: atoms - diatomic vibrotor

Legendre expansion (e. g. 1S (A) – 1Σ (BC)) (Fig. 4):

V (R, θ, r) =
∑

λ

Vλ(R, r)Pλ(cosθ) (64)

(1) fit of Vλ(R, r) as in (60, 61) for fixed R, r (2) fit of each Vλ(R, r),
where Vλ(R, r) can be expanded in a Taylor series in r:

Vλ(R, r) = Vλ(R) |r=re +∂Vλ(R)/∂r |r=re (r − re) + (65)

1
2
∂2Vλ(R)/∂r2 |r=re (r − re)2 + · · ·

- near the equilibrium distance (r ≈ re): only Vλ and the 1st derivatives
have to be fitted in one dimension
- for a regular grid in (R, r) a 2D numerical fit of Vλ(R, r) is possible
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Alternative:
(1) Taylor expansion in r

V (R, r, θ) = V (R, θ) |r=re +∂V (R, θ)/∂r |r=re (r − re) + (66)

1
2
∂2V (R, θ)/∂r2 |r=re (r − re)2 + · · · ,

(2) fit of the coefficients in Legendre polynomials - if one keeps only the
linear term

V (R, r, θ) = V (R, θ) |r=re [1 + ∂ lnV (R, θ)/∂r |r=re (r − re)] , (67)

- lnV (r) reveals the strength of vibrational coupling [194]
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Simple expansion in r, R, θ:

V (R, r, θ) =
∑
λ,m

V m
λ (R)xmPλ(cosθ), x = (r − re)/re (68)

Ewing [189]: “fixed angle”-fit (A,B, α, β, γ, δ: parameters to be fitted)

V (R, r, θ) = A(θ)eγ(θ)(r−re)−α(θ)R −B(θ)eδ(θ)(r−re)−β(θ)R (69)

(1) “rigid rotor”-fit (r = re)
(2) fit of the rest: HF-He, Ar; CO-He, Li+; Li+-H2, N2 [189]; SiO-He [195]

other applications: Table 3 in [20], (He,Ne)-CO: [196, 197, 198], C(3P)
+ H2: [199], O(3P) + H2: [200], HeCl2: [201], H2Ar: [202], HCN/HNC:
[203], ArHF: [204]
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with Morse-like expansions (29): H+
3 : [99, 101, 205], H2O: [206, 207, 208,

209], Na+-H2: [210], Ar-NO+: [211], LiH-He: [212].
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Three coordinates: Atom - rigid nonlinear polyatomic system

Figure 5: Coordinates for “atom – rigid nonlinear polyatomic”- system

Expansion in spherical harmonics Y m
l (θ, φ) (see Fig. 5):

V (R, θ, φ) =
lmax∑
l=0

l∑
m=−l

[4π/(2l + 1)]
1
2 V m

l (R)Y m
l (θ, φ) (70)
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He-H2CO [213]: lmax = 12

V m
l (R) = Ae−BR − CR−6 −DR−2 , R ≤ 10.5a0

= 0 , R > 10.5a0
(71)

He-NH3 [214]: symmetry in φ allows for reduction in the number of terms
in the expansion

V (R, θ, φ) =

V (R, θ,−φ) =
∑

λ≥µ>0

V µ
λ (R)

[
Y µ

λ (R̂) + (−1)µY −µ
λ (R̂)

]
(1 + δµ0)−1

=
∑

λ≥µ>0

(2π)−
1
2V µ

λ (R)(2− δµ0)P
µ
λ (cosθ) cos(µφ), R̂ = (θ, φ) (72)

He-NH3 [214]: for V µ
λ , 5th order Lagrange interpolation, exponential

Ansatz, R−n expansion
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Atom-atom-fit: without Legendre expansion

CO2-He [215, 216, 217]: R1 = R3 = RHe−O, R2 = RHe−C

V (R1, R2, R3) = A
[
e−BR1 + e−BR3

]
+ Ce−DR2 (73)

H2O-He [216, 217]: R1 = R3 = RHe−H, R2 = RHe−O

V (R1, R2, R3) =
3∑

i=1

[
Aie

−aiRi −Bie
−aiRi/2

]
(74)
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Four coordinates (R, θ1, θ2, φ): rigid rotor (r1) - rigid rotor (r2)

r r

θ

1 2

θ1

φ = φ  +  φ
1 2

R

2

Figure 6: Coordinates for “linear molecule – linear molecule” system

- R defines center-of-mass separation between two molecules oriented with
respect to θ1, θ2, φ
- an expansion in a radial (A,B) and an angular part (I, Ī) can be further
expanded in Legendre polynomials Pλ or spherical harmonics Y m

l

- the angular part can be described by either a body-fixed (BF) or space-fixed
(SF) expansion
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BF (“body-fixed”) [218]:

V (R, θ1, θ2, φ) =
∑

λ1λ2λ

Bλ1λ2λ(R)Īλ1λ2λ(r̂1, r̂2, R̂) (75)

Īλ1λ2λ(r̂1, r̂2, R̂) = Pλ1(r̂1 ∗ R̂)Pλ2(r̂2 ∗ R̂)Pλ(r̂1 ∗ r̂2)

with three dot products:

r̂1 ∗ R̂ = cos(θ1), r̂2 ∗ R̂ = cos(θ2) (76)

r̂1 ∗ r̂2 = cos(θ1) cos(θ2) + sin(θ1) sin(θ2) cos(φ) (77)

(r̂ = (θ, φ): angular part of vector r)

– Ralph Jaquet, University Siegen – 99



SF (“space-fixed”):

V (r̂1, r̂2, R) =
∑
l1l2l

Al1l2l(R)Il1l2l(r̂1, r̂2, R̂) (78)

Il1l2l(r̂1, r̂2, R̂) =
∑

m1m2m

〈l1m1l2m2 | lm〉Y m1
l1

(r̂1)Y
m2
l2

(r̂2)Y m
l (R̂) (79)

m1 + m2 = m
l1 + l2 + l = even
〈l1m1l2m2 | lm〉: Clebsch-Gordan coefficients
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Relations: BF – SF with R̂ = (0, 0) and Y 0
0 = 1

expansion in spherical harmonics Y m
l :

Il1l2l = [(2l + 1)/4π]
1
2

lm∑
m=−lm

〈l1ml2 −m | l0〉Y m1
l1

(r̂1)Y
m2
l2

(r̂2), lm ≤ l1, l2

(80)
expansion in associated Legendre functions Pm

l :

Il1l2l = [(2l + 1)/4π]
1
2 [〈l10l20 | l0〉P 0

l1
(θ1)P 0

l2
(θ2) + (81)

lm∑
m=1

(−1)m2〈l1ml2 −m | l0〉Pm
l1

(θ1)Pm
l2

(θ2) cos (m(φ1 − φ2))], lm ≤ l1, l2P
m
l (θ) = (−1)mP−m

l (θ)

- SF expansion is preferred over above BF expansion (generally)
- radial coefficients are fitted or interpolated numerically
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Flower et al. (CO-H2: [219]): alternative BF expansion

V (r̂1, r̂2, R) =
∑

l1l2µ≥0

Vl1l2µ(R)Ỹl1l2µ(r̂1, r̂2), r̂1, r̂2 : BF angular coordinates

(82)

Ỹl1l2µ = 4π [2(1 + δµ0)]
−1

2

[
Y µ

l1
(r̂1)Y

−µ
l2

(r̂2) + Y −µ
l1

(r̂1)Y
µ
l2

(r̂2)
]

(83)

- expansion is equivalent to the SF expansion (78):

Al1l2l(R) = 4π [4π/(2l + 1)]
1
2
∑
µ≥0

Vl1l2µ(R)〈l1µl2 − µ | l0〉(2/(1 + δµ0))
1
2

(84)
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examinations: there is no simple check for the accuracy of the fit

(a) performing a fit using a reduced number of potential values (e. g. 5
out of 6 orientations) and using additional potential values (e. g. the 6th
orientation) as a check

- Berns and v.d.Avoird found in that case poor results for the systems N2-N2

[220] and CO2-H2 [221] !

(b) plot of the residual values shows the quality of the angular convergence

- accurate analysis for CO2-H2 [221]: 36 orientations (1.5 ≤ R ≤ 4 Å) were
necessary
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“site – site” potential: Berns, v.d.Avoird [220]; (N2-N2)

4EAB =
∑
iεA

∑
jεB

Vij (85)

Vij(Rij) = qiqjR
−1
ij − CijR

−6
ij + Aije

−BijRij (86)

i, j: sites (e. g. atoms, position of charges qi, etc.) of molecules A and B
examples: (CO2)2: [222], (O2)2: [223]

further examples:
overview: general [224], applications: Table 4 in [20], H2-CO [225, 226],
CO-CO: [227], H2-OH: [228], O2-O2: [229, 230, 231, 232], dimers of CO,
HF, H2O, NH3: [234], (HF)2: [235, 236], (H2O)3,4: [237, 238], (H2O2)2:
[239], (H2O)2 (atom-atom potential and many-body expansion): [129],
Ar2-HF: [130]
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More than four variables

H2-H2: [240], with Al1l2l(R, r1, r2) spline fit; [241], (HF)2(6D): [236],
(HCl)2 (6D): [242, 243, 244]

further examples: [20]

“Larger molecules” and other vdW-systems

general: [229, 245], intermolecular interactions in crystals (atom-atom,
site-site): [246]

Ar-C6H6: [247], Rg(rare gas)-CH4: [248], H2O-H2: [249], Ar-C2H2: [250],
(He,Ne)-SF6: [251], Ar-CH4: [252], He-C2H2: [253]

overview: molecules with up to 10 atoms [59]
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Two and more coordinates: Reactive scattering
Three-atomic systems

• difficulty in fitting PESs for reactive scattering in comparison to non-
reactive problems

- interaction region and the different asymptotic regions have to be described
with the same accuracy

- mostly one set of coordinates (e. g. Jacobi coordinates) is not satisfactory

- hyperspherical coordinates can manage the full description of the PES

- in case of dynamical calculations hyperspherical coordinates are not the
optimal one in the limit of the asymptotic region
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(H + H2) reaction: probably most detailed investigated system

- for the electronic ground state:
[254], SLTH: [255, 256], DMBE: [257, 258]

- excited states: [258, 259, 260]

- more details: see the introduction in [258]

• generally, the chemical accuracy of ±1 kcal/mol is needed for A + BC →
AB + C PESs

- applications till 1984: Tables 5 and 6 in [20]
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LEPS-, DIM- Ansatz
LEPS (London, Eyring, Polanyi, Sato) [261, 262, 263]
- LEPS-functions favor collinear reaction-paths
- errors in the determination of barrier heights [117]
- problems in the case of several reactive channels
- examples: review [17], modified LEPS: H2O [264], Cl+HCl [265]
- LEP for HXY-systems (X,Y= hydrogen or other elements): [266]

DIM (diatomics-in-molecules): Kuntz [17, 122, 267], Brown and Hayes
[120]: He + H+

2 → HeH+ + H, [268]: NH3 → NH2 + H, [269]: HO2,
[270]: rare gas clusters

DIM and LEPS:
- yield reasonable PE-values at geometries, where not many ab initio data
are available - in case of scattering calculations LEPS and “spline-fitted”
potentials show different results: HeH+

2 [271], NeH+
2 [272]
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“Rotated-Morse-curve-spline” (RMCS) [273]

Figure 7: Coordinates for rotated Morse-curves
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Wall, Porter [274]:

V (RAB, RBC) = V (l, θ) = D(θ)
[
e2β(θ)(l−le(θ)) − 2eβ(θ)(l−le(θ))

]
(87)

le(θ): equilibrium value as a function of θ (see Fig. 7)

l =
√

(R0
AB −RAB)2 + (R0

BC −RBC)2 (88)

θ = tan−1
[
(R0

AB −RAB)/(R0
BC −RBC)

]
(89)

many calculations by Kuppermann et al. [275, 276] and Connor, Jakubetz
et al. [273, 275, 276, 277, 278]

H3: [258], Cl + HCl: [279]
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Sorbie-Murrell-type [109]

H3: [117]; O(3P )+ H2: [280, 281], O(1D)+ H2: [282], H+
3 : [283, 284],

LiFH: [285], NH+
2 : [286], CH+

2 : [287], HeH+
2 : [288], O3: [289]

further applications:
different functional forms and comparative study of the reaction dynamics:
O(3P ) + H2 [290, 291]

further examples: Zn + H2: [292], Ar+3 : [293, 294], Li+HF [295], He+LiH
[212], H3 [256, 258, 296], H+

3 : [205, 297, 298, 299],H−3 : [300]

excited states: HeH+
2 : [301], N2O: [302], triplet H+

3 (hyperspherical
coordinates): [303]
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Multi-valued potentials
• topography of PESs in the vicinity of intersection points and seams
- in chemical reactions [258, 304], molecular spectroscopy [305] and organic
photophysics [306, 307].

Figure 8: Model conically
intersecting PES plotted along the
branching space (x1,x2). The
arrows indicate the direction of the
minimum energy path connecting
the FC point to the photoproducts
P and P’. M∗: excited state
intermediate; TS: transition state
connecting M∗ to the conical
intersection (CI) (Bernardi, F.,
Olivucci, M., Robb, M.A., Chem.
Soc. Rev. 25 (1996) 321).
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Ruedenberg et al.:
- detailed investigations of the fitted multi-valued potentials for O3, S3,
SO2, S2O [308, 309, 310]
- analysis general PESs near intersection points [308, 311]
- influence of the neighborhood of a conical intersection and other
specific regions, like bifurcating transition regions (e. g. ring opening of
cyclopropylidene to allene [312, 313, 314, 315]), on chemical reactions
- the use of perimetric coordinates might help to get a better insight in
viewing the PESs in three dimensions [316] - different approaches for fitting
the region near the intersection point (seam, etc.) [308, 310, 311, 317, 318]
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further examples:
FH2: [285], H2O: [319], CH2: [320, 321], four electronic states of H3: [258],
H+

3 : [299]

double many body expansion (DMBE): H3 [322], H3, FH2, NO2: [28]

reactions at an avoided crossing: A + B2 → AB + B [323]

(conical, Jahn-Teller, Renner-Teller, etc.) intersections: [324], SO2: [325],
O+

3 : [199, 326], C6H
+
6 : [327], NO2: [328]

some PESs for photodissociation problems: HCO (with Renner-Teller
coupling) [329, 330], H2O: [331], O3: [332], HNCO: [333], H2O2: [239]
Four- and polyatomic systems

review: [45, 22, 41], OH + H2 [334, 335, 336], H+
2 + H2 [337], OH + CO

[338], NH + NO [41], CN + H2 [339, 340, 341], H4: [128, 342, 343], Cl−

+ CH3Cl: [344, 345]
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Spline and other interpolation schemes and comparison in dynamics
calculations
2D: [42, 272, 346, 347, 348, 349, 350]; 3D: [89, 90, 91]
H+

3 : symmetry coordinates, polynomial Ansatz (Morse-type for distances)
special choice of points [101, 205, 351, 352]
NeH+

2 : diff. forms for a fit-Ansatz: influence on rovibr. frequencies [126]
Miscellaneous
Reaction-path potentials: [59, 45]
Interpolation for a special reaction-path: [59, 60, 138, 139, 140, 51, 45, 143]
Voronöı step representation: [145, 146]
Piecewise tessalation (with Clough-Tocher interpolant): [292]
Genetic algorithms and neural networks: [135, 136, 137]
Distributed approximating functional fit: [353]
Reproducing kernel Hilbert space: [147, 148, 149]
Multiperturbation approach to PESs for polyatomic molecules: [354]
Permutation-inversion-group invariant representation: [355]
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Description for fluids, solids and biochemical problems

large number of applications to the subject of PESs:
- fluids, solids, atomic and molecular interactions on solid surfaces,
biochemical problems
- with few exceptions these studies are performed with empirical functions
or force field methods

intra/intermolecular potentials for molecular dynamics investigations in
condensed phase:
Ne [356, 357], Ar [358], CH4/N2 [359], CCl4 [360], NH3 [361], N2 [362],
CH4, CH3F, CHF3, CH3Cl, CH2Cl2, CH3CN, CO2 [363], H2O [129, 364],
HF [365, 366, 367], HCl [242], CO2 [222]

polyatomic molecular ions: [103]

atomic solids: [368, 369]
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solids: general: [370, 371], N2-N2: [372], O2-O2: [223], O+
4 /Ne: [373],

Li+/F− [374]

clusters: general: [52, 53, 54], H2O: [375]

solid surfaces: review: [376], H2/Cu(100) [377], H2/Hg(liquid surface):
[378]

biochemistry: topology of multidimensional PES of a peptide [379]
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Which area of the PES influences which property?

range properties
(1) very short cross sections at high scattering energies
(2) R < Re, V (R) ≈ 0 description of fluids (molecular dynamics)
(3) R ≈ Re rotation/vibration frequencies (spectroscopy of

stable molecules), rotationally inelastic cross
sections (van der Waals (vdW) molecules)

(4) R > Re polarizabilities (C6-, C8-, etc. terms of vdW
molecules), spectroscopic properties

(5) barriers reaction cross sections (vib., rot. or trans.
excitation of the reaction products)

(6) minima equidistribution of energy for single degrees of
freedom, spectroscopic properties

(7) FC-region photodissociation (excited potential energy
surface), reaction probabilities (vib., rot. or trans.
excitation of the reaction products)
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Fitting procedures for PESs
(a) one variable (R)
create a plot for given energy points and resulting fitting function

(1) in case of a minimum, calculate Re, De, (d2V
dR2)|R=Re

(i) only three points given: fit to Morse-function
(ii) more then three points given: fit to ER- or mod. Morse-f.
(iii) many points: like in (ii) or interpolation (spline, Lagrange,

polynomial) with correct choice of expansion variables

(2) van der Waals minimum: choose a HFD-Ansatz
(3) more than one minimum: in case of enough points choose an
interpolation (e. g. splines)
(4) no extremum: fitting with ER-Ansatz, anti-Morse or lnV with
interpolation scheme
- quality of interpolation can be checked by omission of some data points;
this elucidates, how sensitive the fitting reacts on single points
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(b) two variables (R, θ): atom – rigid rotor
• regular grid: Legendre-functions have to be expanded for every R
- calculate Vλ from a GL-quadrature (or one chooses a matrix inversion or
a LLS-procedure)
- convergence of the Legendre-expansion has to be checked
alternative: one can perform a “fixed angle”-fit for an analytical function
Ansatz in R (e. g. as in (a))
- Vλ(R) has to be fitted as in (a)
alternative: explicit 2D-fitting (e. g. spline) with the original data or one
uses in addition interpolated data for explicit 2D-fit (especially, if there are
only a few (R, θ)-data points)
• irregular grid: Akima method can be used or with the help of interpolation
a regular grid can be created
- good choice for testing the fit: perform 1D- and 2D-contour plots
- visually it is easier to discern, if a fit makes sense (additional humps, small
oscillations)
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(c) Two variables (R1, R2): ABC-system for fixed angles
regular, dense grid: 2D-spline
few points: many body expansion Ansatz (e. g. SM)
irregular grid: Akima-interpolation or analytical Ansatz (e. g. of SM-type)

(d) Three variables (R, r, θ): atom – vibrotor
regular grid:
(1) Legendre expansion: Vλ(R, r) or Taylor-expansion in r (diatom): “rk”
for given R: then Vλ,k(R) has to be calculated
(2) “fixed angle”-fit: 2D-spline or analytical Ansatz
(3) 3D-spline
• check the quality of the fit: plot V , compare the different fit-variants,
e. g. if there are oscillations depending on the fitting scheme
irregular grid: create a regular grid with the help of 1D-interpolations or
use an analytical Ansatz (of SM-type)
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(e) Four variables (R, θ1, θ2, φ): rotor – rotor
regular grid: space-fixed (SF) expansion and fitting of Vλ1,λ2,λ(R) in
1D (interpolation, analytical Ansatz) or alternatively the body-fixed (BF)
version
(f) Reactions: three variables (R1, R2, R3) or (R, r, θ)
regular grid:
(1) 3D-spline ( very seldom one has so many points !)
(2) for fixed coordinates (from which the potential does not depend strongly)
perform a 2D-spline or a 2D-functional Ansatz (RCMS) for the other
coordinates
(3) many-body expansion (e. g. SM), “site-site”-Ansatz
attention: asymptotic potential energy curves (diatom) have to be fitted
independently and have to be fitted to the interaction range (many body
expansion) by spline or a NLLS-method irregular grid:
(1) create points for a regular grid (as mentioned in (a))
(2) many body expansion, “site-site”-Ansatz, RMCS-fit
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(g) Where do we have to create data points?

• great advantage if a dense regular grid of data points can be created

• costs for each ab initio point limits the number of data to be calculated

• therrefore, it is not possible to create enough points for a regular grid in
case of high dimensionality (> 3D)

• one has to think in advance how many angles are needed in the
corresponding Legendre-quadrature
- an arbitrary choice of points will make the fitting difficult

• for distance-coordinates: number of points should be large enough that
strong changes in the potential can be described correctly

• for a strong anisotropic atom-rotor potential: many angular points are
needed
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• dynamical calculations can give hints beforehand (e. g. test calculations
with a model potential can be performed), in which area points are needed
(e. g. with a reaction path potential)

• tests with trajectories can show, which area of the potential can be
reached for a given collision energy
- quantum dynamics calculations: a large range for the PE is needed

• choosing the points: take care of the correct symmetry and the correct
choice of coordinates
- change of the coordinate-system within a dynamical calculation can imply
that a high quality of the fit in those part of potential energy area is needed,
where in the original coordinate system not enough data were given

• important to perform in between (i. e. before all points are generated) fits
and plots (to see if more or less points will be needed)
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short summary:

• no clear-cut concept for a minimal and additionally optimal choice of
points
• because for no system the “true” potential (except perhaps H2) is known,
there is also no guarantee for the definitions of the fit
• an unequivocal estimate of the error of the fit is not possible (e. g. χ2-
partition function, see also [15, 80])
• spline-type fits reproduce input values (e. g. given energy points, gradients
and higher derivatives); newly calculated (i. e. added) points will show how
good the interpolated regime is
• comparison between different fit-variants and a comparison of calculated
properties and experimental results supplies additional information about
the quality of the fit
• a good fit for a special property is not necessarily a good for the calculation
of other properties
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• different properties are sensitive with respect to special parts of the
potential energy area
• a multi-property-fit might help: (O2-rare gas: [380], Ar2: [127], N2-Ar:
[381])
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4 Combination of theoretical and experimental data for the
construction of PESs

• accurate PESs without experimental information:

- diatomic molecules
- H3 [256, 296], FH2, H+

3 [205])

• improvement:

- use of data derived from spectroscopical and scattering experiments
- interrelation between theory and experiment necessary
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Theory

Nuclei, electrons,
h, e, me, Schrödinger
equation

Potential
Energy

Surface(s)

Cross sections

Macroscopic ("bulk")
coefficients

Experiment

Spectroscopy,
thermodynamics

Molecular beams

Chemical kinetics,
thermophysical
properties

Born-Oppenheimer
approximation

vibro-rotational
calculations

Statistical mechanics

Theories of
molecular collision

Figure 9: The molecular
potential as connecting
link between theory and
experiment.
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• PESs fitted to experimental results:

the PES now includes relativistic effects, adiabatic and non-adiabatic
corrections

in light systems (H+
3 ) a good fit to experimental, spectroscopic results [383]

helps to analyze new available experimental data

-this procedure does not necessarily describe the correct potential energy
form, i. e. the Born-Oppenheimer and adiabatic contributions and the non-
local effect of the non-adiabatic contributions

-the parameters of the fit are influenced by the choice of mass used for the
nuclear motion
- which mass? depends on the “level of theory” [351, 352]

• empirical evaluation of adiabatic and nonadiabatic corrections in small
molecules: [384, 385, 386, 387].
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review articles:

- relations between spectroscopy and PESs [66, 388]
- inversion of experimental data for the determination of inter- and
intra-molecular potentials [61, 389], difficulties to derive potentials from
experimental results

for diatomic systems: special methods
Rydberg-Klein-Rees method (RKR) [61]

larger molecules:
“Fitting molecular potential energy surfaces”
(Law, Hutson and Ernesti [63])

“Fashioning a Model: Optimization methods in chemical physics”
(Ernesti, Hutson and Wright [62])
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PESs constructed using experimental data from spectroscopy and
scattering cross sections:
• LeRoy et al.: anisotropic potentials from van der Waals spectra, e. g.
He-C2H2 [390, 391], H2-Ar, Kr, Xe [202, 392], He-CO [393]
• Bowman et al.: ArOH∗ [394] and HCN [395] potentials from experimental
spectroscopical data
• Carter et al. [396]: used experimental spectroscopical data of stable
molecules like SO2, CO2, CS2 [31], HCN [21], Renner-Teller system NH2

[397], for the global generation of PESs
• Howard et al. [398] used micro-wave and infrared data for the
determination of PESs of NeCO-, ArSiH4 complexes
• Hutson et al. [388]: fitting of van der Waals complexes like Ar-HCl [399],
Ar-HF [400], Ar-H2O [401], Ar-OH [402], Ar2-HF, HCl [403, 404], HeAr+

[405], Li+-H2O [406], CO2-Ar [407, 408], He-HCN [409]
• Keil [410, 411]: “multi-property” -methods, determination of anisotropic
potentials and quantum effects in case of rotationally inelastic cross-sections
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• Jensen [412]: developed the program MORBID to improve potentials for
H2O, CH2, H2Se (information from rotation-vibration spectra)
• Halberstadt et al.: energy transfer data for the fitting of vdW interactions,
e. g. in HeCl2 [413, 201], HeICl [414], ArCl2 [415], HgAr2 [416]
• Tennyson et al. [417]: improved present potentials for H+

3 [418], H2O
[419], fit of the potentials to experimental data
• Ernesti et al. [420]: investigated the possibility to use information given
in rotational rainbows for the fitting of anisotropic potentials
• Battaglia et al. [380]: fitting the potential curves of Rg-O2-systems
(Rg=rare gas). ”multi-property” -analysis
• Saykally et al.: determine the potentials from rotation-vibration spectra:
(HCl)2: [243], Ar-H2O: [401, 421], Ar-NH3: [343]
• Mills et al.: determine PESs, harmonic and anharmonic force fields from
rotation-vibration-data [13, 422, 423]
• Rasmussen et al.: optimize force fields for alkens [424]
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5 Comparison of different fits in some test cases [31, 21]

• test example

(1) typical one-dimensional fits for diatomics:

• H2: splines: [23, 89]; Lagrange-, Hermite- and spline-interpolation: [87];
Taylor expansions and extended Rydberg functions: [31]

• test example for the qualitative difference of Taylor expansions of highest
order, splines and the test function

• Taylor expansions, Morse and extended Rydberg functions with
experimental RKR points for the 1Σ+

g ground state of H2

• Lagrange-, Hermite- and spline-interpolation of the Kolos and Wolniewicz
E,F 1Σ+

g double minimum potential of H2
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Figure 10: Comparison of (a)
interpolational polynomial of
highest order, (b) cubic spline
with (c) the test function
y = 1

1+x2 for 3, 5, 9 and 17
data points.
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a)                                           b)

3th

Figure 11: (a) Comparison of the Taylor expansions to the H2 potential with
the RKR points. (b) Comparison of the Morse function and the Extended
Rydberg function (ER) with the RKR points for H2. (Murrell, J.N., Carter,
S., Farantos, S.C., Huxley, P., Varandas, A.J.C.: Molecular potential energy
functions (1984)).
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Figure 12: Interpolated inner ((a),
(b)) and outer (c) minima of the
E,F 1Σ+

g potential of H2. Shown
are Lagrangian (left panel), Hermite
(center), and spline (right) interpolation
points. Third (solid line) and fifth
(dashed line) order functions were used
[cm−1]. (a) All tabulated points,
shown as rhombs, including the 6
points represented by the squares, are
used. (b) As in (a), but 15 points
clustered around the extrema have been
deleted. (c) As in (a), but for the
outer minimum. (Malik, D.J., Eccles,
J., Secrest, D.: J. Comput. Phys. 38
(1980) 157)
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• Ar2:

Ogilvie [94]:

test of different expansion variables xmn = (R−Re)(m+n)
(mR+nRe)

(m,n: integer)

- m = 0, n = 1: Dunham
- m = 1, n = 0: SPF
- m = 1, n = 1: Ogilvie
- leads to excellent results depending on the type of the functional form
(defined by m,n) and the order of expansion in ρmn

Varandas and da Silva [127]:
very sophisticated fit; multiproperty fit including spectroscopic and
scattering results and second virial coefficients, combination of different
methods
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• fitting the R dependence of the CO-HCl van der Waals interaction

- two most attractive arrangements (Fig. 14 and 13)

- energy points are calculated on the CEPA-level [425]

- different expansion variables

- four point Lagrange, Padé and spline interpolation schemes
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Dunham
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Lagrange
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1/2 (R+Re)
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�µ h

Figure 13: CO –
HCl R-dependence of the less
attractive CO – HCl approach
(R = distance between the two
middle points (!) of CO and
HCl). Seven energy points ( )

are calculated on the CEPA-level
[425] and fitted using different
expansion variables with different
four point interpolation schemes.
No energy point used at R = 15
ao.
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Figure 14: CO – HCl:
R-dependence of the most
attractive OC – HCl approach
(R = distance between the two
middle points (!) of OC and
HCl). Nine energy points ( )

are calculated on the CEPA-level
[425] and fitted using different
expansion variables with different
four point interpolation schemes.
Distances in ao and energies in
µH.
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(2) two and three dimensional spline fits:

• He + H+
2 : Sathyamurthy and Raff [89]

- spline fitted potential energy values and derivatives are compared with the
original DIM values
- influence of different grid sizes on the results of quasiclassical trajectory
calculations (e. g. spatial scattering distributions, distribution of final H+

2

rotational energy for inelastic collisions, etc.)
- detailed analysis (dynamics) shows differences for the two surfaces

- detailed comparison of power series expansions and rational functions:
LiH+

2 [24]
- many body expansions: SO2 [110, 111, 112]
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detailed analysis for NeH+
2 [123, 124, 125, 126]

Ne + H+
2 → NeH+

2 → NeH+ + H

fit of the calculated energy points (CEPA-quality) to three different many
body approaches:

- Joseph and Sathyamurthy [114] (Fit 1: Eqn. (19), introduced by Sorbie
and Murrell [109])
- Schinke [113] (Fit 2: Eqn. (20))
- Aguado and Paniagua [115] (Fit 3: Eqn. (21))

- root mean square errors of the diatomic fits are given in Table 2
- standard deviations for totally 225 points (Npts) are given in Table 3
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Table 2: Root mean square errors of diatomic fits. Energies in eV
Fits 1,2 Fit 3

Diatomic fit - HH 3.66E(-5) 3.16E(-3)
Diatomic fit - NeH 8.60E(-5) 4.58E(-4)

Table 3: NeH+
2 Fits: Surface Deviations in eVa

Fit 1 Fit 2 Fit 3
Θ(deg) Npts ∆Vrms ∆Vmax ∆Vrms ∆Vmax ∆Vrms ∆Vmax

All 225 0.0271 0.189 0.0294 0.221 0.0193 0.138
180 56 0.0204 0.067 0.0208 0.081 0.0120 0.030
150 33 0.0183 0.049 0.0185 0.050 0.0085 0.024
120 32 0.0216 0.076 0.0271 0.074 0.0134 0.042
90 39 0.0156 0.046 0.0190 0.063 0.0103 0.027
60 28 0.0268 0.065 0.0316 0.069 0.0224 0.089
30 33 0.0518 0.189 0.0550 0.221 0.0392 0.138
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some details:
- 108 calculated points from an earlier work [124], additional calculations
at 117 geometries
- choice of geometries was dictated by a number of considerations:
(1) a series of points on the repulsive wall were chosen to ensure correct
behavior in this region
(2) points were chosen around the entrance and exit channels so that the
correct asymptotic form would be followed
(3) a choice was made to cover both sides of the saddle points of the
reaction surface
(4) because of the problem of extraneous minima and maxima in areas
where there are insufficient data for the Sorbie-Murrell form, further points
on the bent surfaces were chosen to adequately cover the entrance and exit
channels
(5) similar problem with the Aguado and Paniagua functional form,
additional strategically placed points on the 30◦ surface
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• contour plots of all three different fits are very similar

Figure 15: NeH+
2 : Contour plot

of the potential energy surface
in Jacobi coordinates [126]. (a)
Plot for fit 3 with r(H2) = 2.0 ao

fixed. (b) Comparison of the 3
fits for the coordinates R and θ.
(c) Plot for fit 3 with θ = 180o

fixed. (d) Comparison of the
3 fits for the coordinates r and
R. R is the distance between
Ne and the center of mass of
H+

2 , θ is the angle between R
and the diatomic bond r of H+

2 .
Contours are given in steps of 0.1
eV. Jaquet, R.: Theor. Chim.
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• very small differences for collinear Ne-H-H configurations

Figure 16: A contour diagram of the difference between the PHHJ-1,2,3 potentials
for collinear Ne-H-H configurations [426]. (Kress, J.D., Walker, R.B., Hayes, E.F.,
Pendergast, P.: J. Chem. Phys. 100 (1994) 2728.)
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• detailed information of the three different fits and the minimum energy
paths [125]
• differences in the fits are seen more clearly when these PESs are used in
dynamics calculations:
- bound state calculations for the rovibrational levels of NeH+

2 and its
isotopomeres
- quantum scattering studies of long lived resonances for the reaction
Ne + H+

2 → NeH+ + H [426]
- quasiclassical and approximate quantum mechanical (R-IOSA) studies of
the intramolecular isotope effects in proton transfer:
Ne + HD+ → NeH+ (NeD+) + D (H) [427]
• bound state calculations reveal the differences in the three fits
- Table 4: differences in the calculated frequencies of ≈ 50 cm−1

- scattering calculations: 50 cm−1 ≈ 0.006 eV; small error: better than the
accuracy of the fit - BCRLM reaction probabilities [426]: average height of
the strongly osc. reaction probability P0

2→0: 0.05 (Fit 1) — 0.15 (Fit 3)

– Ralph Jaquet, University Siegen – 147



Table 4: Rovibrational levels [cm−1] for NeH+
2 (J = 0, j = even) for fit

1,2,3; relative to the vibrational ground state energy (Ne + H+
2 dissociation

limit). νr = H+
2 stretching mode, νb= Ne – H+

2 bending mode and νs=
Ne – H+

2 stretching mode.

Fit 1 2 3
E000 -2070.231 -2112.907 -2108.450

νr νb νs

0 0 0 0.0 0.0 0.0
0 0 1 849.5 858.6 810.7
0 2 0 1198.0 1228.4 1189.4
0 0 2 1566.6 1587.3 1513.6
1 0 0a 1726.6 1740.3 1747.6
0 2 2 1884.7 1919.4 1863.6
0 4 1 2104.8 2146.5 2108.1
0 0 3 2171.8 2203.8 2139.5

2366.8 2422.1 2394.1
2456.6 2492.6 2534.5
2578.1 2610.8 2582.8
2698.8 2744.3 2700.8
2744.7 2795.0 2776.2
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Fit of H+
3 (overview: [428])

different fits:
- power series ( for rovibrational calculations [99, 101, 205])
- many body expansions(for scattering calculations [280, 282])

PES for calculating the lowest rovibrational states (can also be used for
higher energies):

- power series expansion in symmetry adapted deformation coordinates Sa,
Sx and Sy (proposed by Meyer, Botschwina, Burton (MBB) [101])
- seems to be the optimal choice
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MBB points are labeled by three integers na, nx, ny, related to the
coordinates Sa, Sx, Sy [a0]

Sa = 0.15 na = (R̃12 + R̃23 + R̃31)/
√

3 (90)

Sx = 0.15 nx = (2R̃12 − R̃23 − R̃31)/
√

6 = Se cos φ (91)

Sy = 0.15 ny = (R̃23 − R̃31)/
√

2 = Se sinφ (92)

R̃kl are related to the actual bond distances Rkl as

R̃kl =
[
1− exp

{
−β
(
Rkl/Rref − 1

)}]
/β (93)

= (Rkl −Rref)/Rref + O

{[(
Rkl −Rref

)
/Rref

]2}
β = 1.30 (MBB)
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• small displacements from the equilibrium:
- the Sa, Sx, Sy are proportional to symmetry deformation coordinates,
which are automatically normal coordinates
- at the level of the harmonic approximation there is complete decoupling;
only those points matter where two of the labels na, nx, ny vanish, at least
if Rref = Re

- displacements from the equilibrium geometry are described by the
MBB coordinates in the most symmetric way - main advantage of MBB
coordinates: power series expansion of the PES converges rapidly
- MBB: rms-error: 1 cm−1 (N = 7; weighted least-square fit)

V =
∑

n,m,k

VnmkS
n
a S2m+3k

e cos(3kφ), n + 2m + 3k ≤ N (94)

- expansion in internal coordinates (R12, R23, R31): not all possible
combinations of these coordinates are physically meaningful
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- the Rkl must obey the triangular inequality; for linear arrangements the
triangular inequality becomes an equality(limit of the physically allowed
domain)
- MBB coordinates (as well as the MBB selection of points) are well adapted
to a study of the vibrations of H+

3

- scattering of H2 and H+, autodissociation of highly vibrationally excited
H+

3 : expansion in Jacobi coordinates is presumably preferable
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Burton et al. [99]:
- analysis for Dunham, SPF and Ogilvie type variables in the internuclear
distance
- power series expansion in the sixth order (23 parameters) for 78 energy
points
- χ2 residual parameters are 60, 1.4 and 2.2 µH
- high order coefficients of the Dunham and Ogilvie expansions are large
and swamp the harmonic and cubic terms
- energy contour plot (Fig. 17): vibration symmetry coordinates, big
differences for the three types of expansions
- singular value decomposition (SVD): to rule out numerical problems related
to linear dependencies for the SPF and Ogilvie expansion
– drastic reduction of the size of the coefficients of higher order – variance
χ was only insignificantly changed
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Figure 17: H+
3 : Comparison

of the energy contour plots
as a function of the vibration
symmetry coordinates; (a)
Dunham sixth order force field,
(b) SPF sixth order force field
and, (c) Ogilvie sixth order
force field. The fits are based
upon 78 PNO-CI ab initio data
points. Burton, P.G., von
Nagy-Felsobuki, E.I., Doherty,
G.,Hamilton, M.: Mol. Phys.
55 (1985) 527
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• Röhse et al. [205]:
- 69 energy points; CISD-R12 method; 7-th order fit (using MBB coordinates
and SVD) with a weighted standard deviation of 0.6 µH
- error compared to experiment of ±1 cm−1: for the lowest frequencies of
H+

3 and its isotopomeres depending on which nuclear mass was chosen in
the dynamics calculation (BO-level !)
• Cencek et al. [351, 352]:
- fits for 7-th up to the 10-th order expansions, MBB-coordinates - absolute
accuracy of the electronic energy (BO): 0.01 cm−1

- contour plots did not show whether or not near the potential energy
minimum extraneous minima or maxima are produced
- rovibrational term values and frequencies reveal no internal problems
- adiabatic and relativistic corrections had been included
- different isotopomers of H+

3 : deviations between a few tenth and a
hundredth of a wavenumber (without any empirical corrections)
- 10-th order fit slightly better than 9-th order fit; both are different from
the results of the 7-th order fit
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• reactive H3 (H + H2): ground state PES; detailed investigated system
• many fits: [256, 258, 296]; influence on scattering calculations: [258, 353,
429, 430]

Further examples: O(3P ) + H2 [290, 291], OH + H2 [51, 140, 335, 336],
F+H2 [431, 432, 433], H+

3 : [283, 284]

review: bimolecular reactions involving four or more atoms, using mostly
fitted ab initio potentials: [8].
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6 Formulae for Lagrange-, Hermite-, spline- interpolations and other
solution techniques

Interpolating functions
(a) Lagrange interpolation formula [29] (polynomial degree: m− 1):
subinterval; m energy points fj (positions rj) are exactly reproduced by

1D : E(r) =
m∑

j=1

fj

m∏
i 6=j

(ri − r)

m∏
i 6=j

(ri − rj)

, nD : E(~r) =
m∑

j=1

fj

m∏
i 6=j

|~ri − ~r|

m∏
i 6=j

|~ri − ~rj|

(95)
• formulation may be useful on computers with array processors (calculation
of vector norms)
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different formulation: nD

E(r) =
m∑

j=1

fj

n∑
k=1

m∏
i 6=j

(rik − rk)

n∑
k=1

m∏
i 6=j

(rik − rjk)

(96)

alternative: use of a recursion formula [80]
(b) rational interpolation: only energy points are given

E(~r) =
Pµ(~r)
Qν(~r)

(97)

Pµ = polynomial (degree µ), Qν = polynomial (degree ν)
- recursion relation: given points will be reproduced exactly [80]; poles can
be described
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(c) Hermite interpolation (polynomial degree: 2m− 1):

subinterval: m energy points fj and derivatives gj (positions rj) are given

1D:

E(r) =
m∑

j=1

fj

1− 2
m∑

p6=j

(rj − r)
(rp − rj)

− gj(rj − r)


m∏

i 6=j

(ri − r)2

m∏
i 6=j

(ri − rj)2
(98)
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nD:

E(~r) =
m∑

j=1


fj


1− 2

n∑
k′=1

m∑
p6=j

m∏
i 6=j
i 6=p

(rik′ − rjk′)

n∑
k=1

m∏
i 6=j

(rik − rjk)




(99)

×


m∑

k=1

m∏
i 6=j

(rik − rk)

n∑
k=1

m∏
i 6=j

(rik − rjk)


2

+
m∑

j=1

n∑
k=1

gjkGjk(~r)
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with

Gjk(~r) = −(rjk − rk)

m∏
i 6=j

(rik − rk)2

m∏
i 6=j

(rik − rjk)2
(100)

- “osculating” polynomials can be obtained, which reproduce exactly energy
points fj and 1st derivatives gj (respectively partial derivatives gjk)
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(d) cubic spline-interpolation [83, 434]:
subinterval: only N energy points fj (positions rj) are given

1D:

E(r) = Ei(r) = ai + bi(r − ri) + ci(r − ri)2 + di(r − ri)3 (101)

for ri ≤ r < ri+1 in [r1, rN ], i=1,2,...,N-1

(1) ai = fi, hi = ri+1 − ri, i=1,2,...,N-1
(2) from the continuity of E′′(r) at inner nodes follows

di−1 =
ci − ci−1

3hi−1
(102)

(for natural splines: c1 = cN = 0), i = 2, 3, .., N − 1
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(3) from the continuity of E(r) at inner nodes follows

bi−1 =
ai − ai−1

hi−1
− 2ci−1 + ci

3
hi−1, i = 2, 3, . . . N (103)

(4) continuity of E′(x) at inner nodes leads to

ci−1hi−1 + 2(hi−1 + hi)ci + ci+1hi = 3
(

ai+1 − ai

hi
− ai − ai−1

hi−1

)
, (104)

i = 2, 3, . . . , N − 1

(solution of a tridiagonal system of equations)
alternative: recursive formula of Mezey: [29]
further subjects: see [82, 83, 434, 435, 436, 437]
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“compensation”-splines [82, 438]: N energy points fj with error σj

N∑
i=1

[
fi − E(ri)

σi

]2
+ λ

∫ rN

r1

[E′′(r)]2dr = Min (105)

(λ: Lagrange multiplier)

Bicubic splines (Ansatz of tensor products) [82], basis splines (B-splines)
[434], x-splines [439], Hermite-splines [82], cardinal splines [440], Bezier-
splines [82] (no monotonical ordering of the grid points), L-splines [88],
Bernstein-Bezier-representations [29]
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(e) Akima interpolation [84, 85, 441, 442]

- variant of the cubic spline: avoids strong “elongations” of the interpolating
function between the grid points
- good for sudden changes in the potential, does not depend too strongly
on the choice of the grid as in case of the natural splines

(f) Power series (polynomial) expansion
simple Ansatz:

y = c1 + c2x + ...cNxN−1 (106)

For N points yi one has to solve a system of linear equations: 1 x1 x2
1 · · · xN−1

1
... ... ... ...
1 x1

N x2
N · · · xN−1

N

  c1
...

cN

 =

 y1
...

yN

 (107)

- different variants to solve the above equation [80]
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“Least-squares error” minimization procedure: “more data than
parameters”

• different variants of solving least-squares problems [30, 71, 80, 81]
(a) least-squares method (linear/nonlinear)
(b) “χ2” weighted least-squares method
with commonly used algorithms [30] like Gauss-Newton [15], Levenberg-
Marquardt [80, 443], SVD [80, 444], steepest descent [15], iteratively
re/weighted [445] steps

for N data points {xi, yi}, i = 1, . . . N and M adjustable parameters
{aj}, j = 1, . . . M, M ≤ N

y(x) = y(x; a1, · · · aM) (108)
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minimization of {aj}: Min

{
Q =

N∑
i=1

[yi − y(xi; a1, · · · aM)]2
}

(109)

or Min

{
χ2 =

N∑
i=1

(
[yi − y(xi; a1, · · · aM)]

σi

)2
}

(110)

- each point (xi, yi) has its own known standard deviation or “measurement
error” σi

• formula can be derived from the maximization of the probability of the
data set from the product of probabilities of each point (Gaussian normal
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distribution of the error)

P ∝
N∏

i=1

{e−1
2(

yi−y(xi)
σ )2∆y} (“maximum likelihood estimation”)

(111)
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standard deviations σ of these normal distributions are the same for all
points:

σ =

√√√√ N∑
i=1

[yi − y(xi)]2/(N −M) (112)

the following equations have to be solved:

0 =
N∑

i=1

(
yi − y(xi)

σ2
i

)(
∂y(xi; · · · ak · · ·)

∂ak

)
, k = 1, . . . M (113)

- in general, there are M nonlinear equations
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Special case: “linear regression”

y(x) =
M∑

k=1

akXk(x) (114)

Xk(x): basis functions, ak: parameters to be calculated

minimization of χ2 leads to normal equations (linear equation system):

M∑
j=1

αkjaj = βk, or equivalently Aa = b (115)

αkj =
N∑

i=1

Xj(xi)Xk(xi)
σ2

i

, βk =
N∑

i=1

yiXk(xi)
σi

(116)
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Solution of aj:

aj =
M∑

k=1

[α]−1
jk βk =

M∑
k=1

Cjk

[ N∑
i=1

yiXk(xi)
σ2

i

]
(117)

Variance of aj:

σ2(aj) =
N∑

i=1

σ2
i

(∂ aj

∂ yi

)2

with
∂ aj

∂ yi
=

M∑
k=1

CjkXk(xi) / σ2
i (118)

σ2(aj) =
M∑

k=1

M∑
l=1

CjkCjl

[ N∑
i=1

Xk(xi)Xl(xi)
σ2

i

]
= Cjj (119)

Cjk = [α]−1
jk is the covariance between aj and ak.
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Caution: in case of the direct solution of the normal equations one has to
deal with rounding errors for the Gauss-Jordan- or Cholesky-procedure [80]

Alternative: QR-decomposition or even better SVD (“singular value
decomposition”) [80, 444]

general problem associated with multi-dimensional least-squares problems:

- the parameters are correlated [30, 446] - it is desirable to constrain the
least-squares problem to a subspace of the full parameter space [16, 447]
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Singular value decomposition

• linear dependencies of the basis functions or combinations of basis
functions
- will result in numerical problems with the solution of systems of linear
equations
- least-squares procedures: equations can be overdetermined (data) and
additionally underdetermined (functional Ansatz, basis)

search for a (eq. 115) that minimizes:

χ2 = |A a− b|2 (120)

A and b are given as

Aij =
Xj(xi)

σi
, bi =

yi

σi
(121)
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choose the following Ansatz:

y(x) =
M∑

k=1

akXk(x) (122)

χ2 =
N∑

i=1

[ yi −
M∑

k=1

akXk(xi)

σi

]2
(123)

A (M ×N) will be (following SVD) separated in three matrices [448]:

A = U W VT (124)

- U(M ×N), V(N ×N): orthogonal matrices
- W(N ×N): diagonal matrix (wi ≥ 0)
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formal solution of the problem (work from right to left):

a = A−1b = V
[
diag

(
1
wj

)]
(UTb) (125)

- for a non-singular matrix A: project one vector space onto another vector
space of equal dimension

for a singular matrix A:
- projection will be done on a vector space of smaller dimension
- concepts of nullspace and range are important
- subspace of a (nullspace) is mapped to zero, A a = 0
- subspace of b that can be reached by A (by mapping of a) is called the
range of A - columns of U with the index j, to which wj 6= 0 belongs,
describe orthonormal basis vectors, which span the range
- columns of V with the index j, to which wj = 0 belongs, describe
orthonormal basis vectors for the nullspace
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solution of the least-squares problems:

a =
M∑
i=1

(U(i) b
wi

)
V(i) ±

1
w1

V(1) ±
1
w2

V(2) ± · · · (126)

σ2(aj) =
M∑
i=1

1
w2

i

[V(i) ]2j =
M∑
i=1

(Vji

wi

)2

(127)

- V(i) (i denotes the columns of V) defines the principal axis of an error
ellipsoid of a

- if 1/wi is singular or very large, one sets 1/wi to zero.
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Nonlinear Ansatz

function to be fitted:
y(x) = y(x; a1 · · · am) (128)

- depends nonlinearly on the set of m unknown parameters ak

define a χ2 function:

χ2 =
N∑

i=1

(yi − y(x; a1 · · · am)
σi

)2

(129)

- determine best-fit parameters by minimization which has to proceed
iteratively
- iterative minimization of χ2 starts with current trial parameters acur
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approximation near the minimum (quadratic form)

χ2(a) ≈ γ − d a +
1
2

a D a (130)

d: gradient of χ2, D: 2nd derivative (“Hessian”) of χ2

good approximation: jump to the optimal value

amin = acur + D−1[−∇χ2(acur)] (131)

poor local approximation (130): use the steepest descent approach

anext = acur − const ×∇χ2(acur) (132)
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[∇χ2]k =
∂χ2

∂ak
= −2

N∑
i=1

yi − y(xi;a)
σ2

i

∂y(xi;a)
∂ak

, k = 1, 2, . . . ,M (133)

∂2χ2

∂ak∂al
= 2

N∑
i=1

1
σ2

i

[ ∂y(xi;a)
∂ak

∂y(xi;a)
∂al

−(yi−y(xi;a) )
∂2y(xi;a)
∂al∂ak

]
(134)

constant: small enough not to overshoot the downhill direction

second derivatives: ∂2y(xi;a)
∂al∂ak

- can be destabilizing depending on the functional Ansatz or the available
data points, so that they can be neglected!
- minor (or even larger) manipulations of (134) have no effect on the final
result of a, but only on the route of iteration
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• Levenberg-Marquardt-procedure: varies smoothly between the inverse-
Hessian method and the steepest descent method [80]

- Denis et al. [449] developed a code (NL2SOL) that keeps the second
derivative term (“full Newton type” method) and is reputed to be more
robust than the Levenberg-Marquardt procedure [80]
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Minimization / Maximization of functions: general procedures

search for global and local minima with respect to optim. parameters [80]:
(a) there is no “best” optimization procedure
(b) for local minima one has to use different starting parameters, whereas
for global minima the use of “simulated annealing” methods [450, 80] is
advisable
(c) there is the possibility of restricted and unrestricted optimization
(d) there are different optimization procedures depending on the “quality”
of the input: (1) only functional values (energy) or (2) functional values
and derivatives are given
(e) if only energies are given: use “Downhill Simplex”-method, Powell-,
Brent-method [80]
(f) if energies and 1st derivatives are given: use conjugate gradients (Fletch-
er-Reeves, Polak-Ribiere), “quasi Newton”-method (Davidon-Fletcher-
Powell), Broyden-Fletcher-Goldfarb-Shanno algorithm [71]
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Appendix Software (a) GENLSS: Gauss-Newton-method [451], slow convergence
(b) Marquardt-method: ZXSSQ (from IMSL-library), Levenberg-Marquardt
[443, 80], nonlinear
(c) Gauss-Newton-method: E04FCF (from NAG-library), slow convergence
(d) Gauss-Newton-, gradient-, Marquardt-method: STEPT (from QCPE)
(e) algorithm for SVD-method [80], nonlinear
(f) software from different contributors like CERN, CPC, HSL, ACM (NL2SOL), QCPE
(g) different programs from “Numerical Recipes” [80], chapters 2, 3, 10 and 15
(h) Fit-PowPad [452] from CPC-library: three dimensional for triatomics with D3h, C2v, Cs - symmetry
(i) I-NoLLS: from Law and Hudson [30], interactive computer program (windows version) for nonlinear least-squares
(j) software of different contributors like CERN, CPC, HSL, ACM (NL2SOL), quantum chemistry program exchange (QCPE):
spline, least-squares, etc.
(k) GFF-GOPT: interactive graphical optimization of PE parameters in the consistent force field [453]
(l) polyatomic surface fitting, vibrational-rotational analysis, expectation value and intensity program [454]

(m) ASYM20: harmonic force field calculations: least-squares fitting of PESs to experimental data [13]

List of abbreviations and symbols

Pλ: Legendre polynomial

P
µ
λ

: unnormalized associated Legendre polynomial
R: interatomic distance
θ, φ: angles as internal coordinates
V : potential energy
Vλ: V in Legendre polynomials
V m

l : V expanded in spherical harmonics
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Y m
l : spherical harmonics

1D, 2D, 3D - one, two, three dimensional
AM1 - semiempirical quantum chemical program (Austin 1)
BCRLM - bending corrected linear model
BF - Body-fixed
BO - Born-Oppenheimer
CEPA - Coupled electron pair approximation
CG - Clebsch-Gordan
DIM - Diatomics-in-molecules
DMBE - double many body expansion
ER - Extended Rydberg
GL - Gauss-Legendre
HFD - Hartree-Fock dispersion
HI - Hermite interpolation
LEPS - London- Eyring- Polanyi- Sato
LJ - Lennard-Jones
LI - Lagrange interpolation
LLS - linear least-squares
LR - Long range
MBB - Meyer - Botschwina - Burton
MEP - Minimum energy path
MM - modified Morse function
NLLS - nonlinear least-squares
PE - potential energy
PES - Potential energy surface
QCPE - Quantum chemistry program exchange
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QCT - quasi classical trajectories
QM - quantum mechanical
PNO-CI - configuration interaction with pair natural orbitals
Rg - rare gas
RIOSA - reactive infinite order sudden approximation
RKHS - reproducing kernel Hilbert space
RKR - Rydberg-Klein-Rees
RMCS - Rotated-Morse-curve-spline
rms - root mean square
RR - Rigid rotor
SF - Space-fixed
SI - Spline interpolation
SLTH - Siegbahn-Liu-Truhlar-Howovitz
SM - Sorbie-Murrell
SPF - Simon-Parr-Finlan
SR - Short range
SVD - singular value decomposition
VDW - van der Waals
VSR - Voronöı step representation

Further help

More information about PESs and fitting can be got by searching through the WEB-pages of the relevant journals, e.g. the
journals of the American Institute of Physics (AIP) (http:www.aip.org). Another possibility is to use database systems like Current
Contents (CC), Journal Articles Database (JADE), Quantum Chemistry Literature Database (QCLDB), etc.
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Theory

Nuclei, electrons,
h, e, me, Schrödinger
equation

Potential
Energy

Surface(s)

Cross sections

Macroscopic ("bulk")
coefficients

Experiment

Spectroscopy,
thermodynamics

Molecular beams

Chemical kinetics,
thermophysical
properties

Born-Oppenheimer
approximation

vibro-rotational
calculations

Statistical mechanics

Theories of
molecular collision
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