Clausur Questions
 for Theo.Chem. I

TC, 1a)

Given 2 functions $p_{x}=f \cdot \cos \varphi$ und $p_{y}=f \cdot \sin \varphi$. The range of angles is $\varphi \in[0,2 \pi]$. Normalize p_{x} to 1 . What is $\left\langle\mathrm{p}_{\mathrm{x}} \mid \mathrm{p}_{\mathrm{y}}\right\rangle$? (Try to apply only simple arguments.) What does this result mean?

TC, 1b)

For each observable, measurable quantity x , there is a corresponding operator \mathbf{X}. E.g. if you choose, for position x , the operator $\mathbf{X}=\mathrm{x} \cdot$; then, for momentum p , the operator is $\mathbf{P}=$ \qquad All these operators must have some peculiar mathematical property/ies. Which one(s)?

TC, 1c)

Give the definition of a Hermitean operator A. Which property do its eigenvalues have?

TC, 2a)

Compare (I) $\left[\mathrm{R}_{2} \underline{\mathrm{~N}}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}=\mathrm{NR}_{2}\right]^{+} \mathrm{ClO}_{4}^{-}$, $(\mathbf{I I})\left[\mathrm{R}_{2} \mathrm{~N}=\mathrm{CH}-\mathrm{CH}=\underline{\mathrm{N}}-\mathrm{CH}=\mathrm{CH}-\mathrm{NR}_{2}\right]^{+} \mathrm{ClO}_{4}^{-}$.
How many π-pairs does I : and II : have? Which one of the two compounds absorbs light of smaller frequency?
TC, 2b)
How does the wave number $v=1 / \lambda$ of the first absorption band, of a conjugated π chain with equal bond lengths D and number N of atoms in the chain contributing 1π electron each, in the VIS-UV region vary with the length $L=(N+1) D$ of the chain? Sketch a diagram. Can you derive the relation using the model of an electron in a box?
TC, 2c)
If the wave number number is $v=20 \cdot 10^{3}$ per cm , then the wave length is $\lambda=$
The energy of the respective photons is
eV.

This corresponds to an energy of $\mathrm{kJ} / \mathrm{mol}$.

TC, 3a)

An experimentalist measures the angular momentum component L_{x} of atomic particles along the x axis. He obtains a statistical collection of only three different values: $\approx 1 \hbar$, or $\approx-1 \hbar$, or $\approx 0 \hbar$. Give the value of the angular momentum vector, which characterizes these particles: $l=$
Give the value of the total angular momentum, $|\mathrm{L}|=$ \qquad
TC, 3b)
Which type of 2-electrons positional state function $\psi\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)$ may be combined with the 2-electrons spin direction state function $\boldsymbol{\chi}\left(\mathbf{s}_{1}, \mathbf{s}_{\mathbf{2}}\right)=\boldsymbol{\alpha}\left(\mathbf{s}_{\mathbf{1}}\right) \cdot \boldsymbol{\beta}\left(\mathbf{s}_{\mathbf{2}}\right)+\boldsymbol{\beta}\left(\mathbf{s}_{\mathbf{1}}\right) \cdot \boldsymbol{\alpha}\left(\mathbf{s}_{\mathbf{2}}\right)$? Give an explicit example for $\boldsymbol{\psi}\left(\mathbf{r}_{1}, \mathbf{r}_{\mathbf{2}}\right)$. TC, 3c)
Does the spin function $\chi\left(\mathbf{s}_{1}, \mathbf{s}_{\mathbf{2}}\right)$ from (3b) describe two parallel or two antiparallel spin vectors?
Draw a graphical sketch.
TC, 3d)
Explain the mechanism of covalent bonding.

Colloq, a)

Gold Nanoparticles: Typically they consist of how many atoms? Give a range N :
How can one prevent the Au_{N} cluster particles to form bigger colloidal particles?

Colloq, b)

Sketch the setup to measure the electric conductivity of single molecules .
Which molecules, for instance, are interesting in this context?

Colloq, c)

How does the fluorescence spectrum of a semiconductor nanoparticle look like?
Of a single quantum dot? Of a surface covered with many of them?

Surface, a)

You fill a plastic box with a hole at the bottom with water until the water starts to run out of the hole. This hole has a radius of 0.1 mm . As you know the height of the water level is 14.7 cm . You add a substance which dissolves in the water. The final concentration is $100 \mathrm{mMol} / 1$. You observe that the water starts to run out of the box again until it reaches a height of 12 cm . The temperature is $25^{\circ} \mathrm{C}$. - What is the surface tension after adding the substance?
Surface, b)
Please estimate the surface excess in molecules per nm^{2}.
Surface, c)
Instead of adding the substance, you heat the water to $40^{\circ} \mathrm{C}$. Does water run out (starting from a height of 14.7 cm)? If yes, to which level does it run out?

