TC Clausur 17-02-03 Solutions

Feb. 2003

Lsg. 1a) $\quad p \rightarrow p / \sqrt{\langle p| p| \rangle}=f \cdot \cos \phi /|f| \cdot \sqrt{\pi}=\left(e^{i \alpha}\right.$ or $\left.\pm 1\right) \cdot \cos \phi / \sqrt{\pi}$.
From $\left\langle p_{x} \mid p_{x}\right\rangle=\int_{0}^{2 \pi} d \phi \cdot f^{*} \cos \phi \cdot f \cos \phi=|f|^{2} \cdot 1 / 2 \cdot 2 \pi$.
$\left\langle p_{x} \mid p_{y}\right\rangle=\int_{0}^{2 \pi} d \phi \cdot p_{x}^{*} \cdot p_{y}=\int_{0}^{2 \pi} d \phi \cdot u(\pi) \cdot g(\pi)=0 ; p_{x}$ and p_{y} orthogonal
Lsg. 1b) $\mathbf{P}=-i \hbar \cdot d / d x$; hermitean and linear

Lsg. 1c) A is hermitean, if for any f, g from the range of given functions, always: $\int_{a}^{b} d x \cdot f^{*}(x)$. $\mathbf{A} g(x)=\int_{a}^{b} d x \cdot(\mathbf{A} f(x))^{*} \cdot g(x)$, i.e. $\langle f| \mathbf{A}|g\rangle=\langle\mathbf{A} f \mid g\rangle$

Lsg. 2a) I has 4, II has 4; HOMO is number 4, is u; LUMO is g; N in the middle stabilizes $\mathrm{g} ; \mathrm{HOMO} \rightarrow$ LUMO reduced in II; II absorbs at smaller ν and longer λ.

Lsg. 2b) $\lambda \sim L$ or $\nu \sim 1 / L$. N atoms correspond to $\mathrm{N} \pi$-electrons. HOMO is no. $N / 2$; LUMO is no. $N / 2+1$; box energies are $\sim n^{2} / L^{2} ; \Delta E \sim \nu \sim 1 / \lambda \sim\left\{(1+N / 2)^{2}-(N / 2)^{2}\right\} / L^{2} \sim$ $(1+N) / L^{2} \sim L / L^{2} \sim 1 / L$

Lsg. 2c) $\lambda=1 / \nu=1 / 20 \cdot 10^{3} \cdot \mathrm{~cm}=5.0 \cdot 10^{-7} m=50_{0} n m$, with 2 significant digits (!). $\mathrm{E}=$ $20000 / 8065 \mathrm{eV}=2.48$ or $2.5 \mathrm{eV}=2.48 * 96.5 \mathrm{~kJ} / \mathrm{mol}=23_{9}$ or $2.4 \cdot 10^{2} \mathrm{~kJ} / \mathrm{mol}$

Lsg. 3a) $\quad l=1 ;|L|=\sqrt{l(l+1)} \hbar=\sqrt{2} \hbar=1.414 \hbar$

Lsg. 3b) χ is permutational symmetric. According to Pauli principle ψ must be antisymmetric. E.g. $\phi_{a}\left(r_{1}\right) \cdot \phi_{b}\left(r_{2}\right)-\phi_{b}\left(r_{1}\right) \cdot \phi_{a}\left(r_{2}\right)$, which has vanishing pair density for $r_{1}=r_{2}$

Lsg. 3c) χ represents 2 "parallel" spins, one up, one down, both pointing to the same side.

Lsg. 3d) If 2 AOs of similar energy overlap, they form 2 MOs , one flat between the nuclei, one steep. - Kinetic energy is expectation value of $\left\langle\psi \cdot-0.5 \psi^{\prime \prime}\right\rangle=+0.5\left\langle\psi^{\prime} \psi^{\prime}\right\rangle$: flat MO has low $E_{k i n}$. - If one atomic electron can move around several nuclei, its Δx is large; for the lowest state, Δp is small; $E_{k i n}$ is small. - Electron sharing lowers the energy. - Low orbitals can be filled by up to two electrons. Pair bond results. - At equilibrium, system relaxes, so that virial theorem is fullfilled: $E_{k i n}: E_{p o t}: E=+1:-2:-1$. Electron cloud in bound system is nearer to nuclei ($E_{p o t}$ strongly decreased for lowered E), compression increases $E_{k i n}$ because of Pauli principle. At the end $E_{k i n}$ has risen.

Lsg. Ca) Diameter of atoms is $3-4 \AA$. I.e. 3 Atoms per nm. So: an atomic nano-cluster of a few to several 10 nm has several 10 to a million atoms. Small Au or C nanoparticles have 50 to 100 atoms. Small metal clusters tend to stick together. Cover the surface by ligands (|S-R) or in matrix.

Lsg. Cb) Two sharp metal tips. Connect Molecule, e.g. through S or O atoms. Conjugated π-chains, homo- or hetero-atomic, possibly doped with electron donors or acceptors.

Lsg. Cc) A nanoparticle has a spectrum similar to a large molecule, or a particle in a box. Lines shifted with respect to small molecule or bulk. One particle has sharp lines with broad side wings. Many particles yield a broad overlaid spectrum without details.

