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1 Symmetry Groups

1.1 Groups

Def: A Group is a set of different elements, and a combination (Verknüpfung) � or �
(so-called group multiplication), with fulfills 4 axioms:
1) closed, a � b = c ;
2) associative, (a � b) � c = a � (b � c), so one can write a � b � c ;
3) there is just one neutral or unit element e; a � e = e � a = a ;
4) every element a has its inverse, a�1 = b, with a � b = b � a = e . Note: e�1 = e; law:
(a � b)�1 = b�1 � a�1 !
In general (i.e. in some cases) a � b 6= b � a , the elements do not commute in every case,
the commutator does not always vanish: [a; b] = ab� ba 6= 0.
However for specific groups, ab = ba always for any a; b : these groups are called abelian
(abelsch) or commutative.
Examples of abelian groups:
{all vectors jai} and "addition"; e is the zero vector j0i; inverse of jai is �jai.
{all numbers 6= 0} and "multiplication"; e is 1; the inverse of a is 1=a .
Examples of nonabelian groups:
{function operators} and applying them one after the other; e is 1� ; the inverse of x� is
1=x� ; of d=dx it is

R dx; of p( ) it is ( )2, etc.;
note: [x�; d=dx] = x � d=dx � d=dx � x� = 1� !!
{geometric identity operations} and applying one after the other; e is "no change"; the
inverse is "reverse the change";
note: for an equilateral triangle in the plane we have 6 elements, the order of the group
is 6: E;C3; C23 = C�13 ; �I ; �II ; �III with C3�I = �III and �IC3 = �II . ��1 = �.
Equivalence: C3 and C�13 are different, but very similar. Concerning the symmetric tri-
angle (though not the wind meter), C3 and C�13 are equivalent. The following mathemat-
ical defintion of equivalence is in agreement with the above mentioned intuitive concept:
a and b are equivalent, a ^ b, if there is a c with a = c�1bc or ca = bc.
The equivalence relation is reflexive, a^a; it is symmetric: if a^b also b^a; it is transitive:
if a ^ b and b ^ c, then also a ^ c.
Therefore a group consists of nonoverlapping equivalence classes. e forms always a class
for itself. In abelian groups obviously every element forms a separate class.
Example: the symmetry group of the equilateral triangle in two dimensions has three
classes: (E); (C3; C�13 ); (�I ; �II ; �III ) or (E; 2C3; 3�).
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1.2 Symmetry

1.2 Symmetry

In science a physical object (e.g. molecule, crystal) is described by a mathematical formula
F : In the case of rigid bodies (nonvibrating molecules and crystals) by the coordinates;
in the case of flexible systems (electrons, vibrating or rearranging nuclei) by the equation
of motion.
If we change the coordinates x to x0 by a coordinate transformation Tx!x0 , then the de-
scription formula F(x) changes into another formula F 0(x0). For specific transformations
S the transformed formula has the same form as the original formula:

F(x) Sx!x0���! F 0(x0) = F(x0)
Example: For the rotation of the plane
x = x0 � cos � + y0 � sin �; y = y0 � cos �� x0 � sin �, i.e. ~x = C� � ~x0,
the expression of the Coulomb force F(x) = 1=(x2+y2) is transformed to F 0(x0) = 1=(x02+
y02) = F(x0). The Coulomb force is form-invariant against rotations, it has "rotational
symmetry". S is then called a symmetry transformation. All symmetries, which let the
description formula of the object form invariant, form a group: the symmetry group of
the object.

Common symmetries (coordinate transformations) of objects are: Rotations, reflections,
inversions, translations of the spatial and/or time coordinates; permutations of the num-
bering of the coordinates of identical particles (electrons, same isotopic nuclei).
Note: two classical objects are never identical, this phenomenon does not occur in daily
life, only in the microscopic world.
Note: Instead of transforming the reference coordinates ("turn your head, look through a
mirror") it is sometimes easier to visualize if one transforms the object ("rotate or invert
the molecule"), although many molecules cannot be inverted without bond breaking!

1.3 Symmetries of rigid bodies

If the nuclei in molecules or crystal unit cells do not undergo large amplitude motions or
structural rearrangements, the system may approximately be modeled by a rigid body.
The symmetry transformations keep at least the central point of the system unchanged.
These symmetry groups are called point groups.

Symmetry transformations of rigid bodies are:
n-fold rotations Cn : (Cn)n = E; (Cn)n�1 = C�1n

mirror reflection (Spiegelung) � : �2 = E; ��1 = �
rotational reflection (Drehspiegelung) Sn = Cn � �h = �h � Cn:

S1 = � = I2;S2 = i = I1 (inversion); S3 = I�16 ;S63 = E;S4 = I�14
In (rotational inversion, Drehinversion) = Cn � i = i � Cn

Schoenflies uses the symbols Cn; �v; �h; Sn

Hermann and Mauguin use n;m; =m, but �n = In !
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1 Symmetry Groups

Point groups (example molecules in parentheses):
asymmetric C1
only a mirror plane Cs

only an inversion center Ci

only a symmetry axis Cn(n = 2; 3; :::)
vertical Cn and horizontal �, also Sn Cnh

vertical Cn and vertical �’s (if n even, �v and �d): Cnv

S2n but no C2n (but Cn) S2n
Cn and C2 at 90° Dn

Cn and C2? and �h (and Sn and �v) Dnh

Cn and C2? and vertical �d and Sn but no �h Dnd

"linear"(cylindrical) C1v; D1h

Platonic bodies (equilateral surfaces)
3 triangles at each corner Tetrahedron – T; Th; Td
4 triangles at each corner Octahedron – O;Oh

5 triangles at each corner Ikosaeder – I; Ih
3 squares at each corner Hexaeder or cube – Oh (!)
3 pentagons at each corner Dodekaeder – Ih (!)
sphere – O3

Note the conceptual differences between the symmetry operation (group element) Cn-
rotation, the equivalent class Cn = (Cn; C�1n ), the symmetry element Cn-axis, the sym-
metry group Cn. A symmetry element is not an element of the symmetry group.

Chirality: a molecule is "handy" if, even after rotation, it does not coincide with its mirror
or inversion image. Then it will interact differently with left/right polarized light or with
left/right isomeric molecules. A chiral molecule or unit cell does not posses any Sn or
In. Systems with symmetry group Cn or Dn may be chiral. Symmetric carbon atoms or
asymmetric atoms are neither necessary nor suffiecient for chirality.
nonchiral: Mesoweinsäure, HNRAr
chiral: Alanin, Weinsäure, HPRAr, HRCCCRH, [Fe(Ox)3]3�, Helicen

Crystal classes
Those point groups, which can occur for crystal unit cells: only those with C1; C2; C3; C4; C6
axes. There are only 32 three-dimensional crystal classes: C1; Ci (2 triclinic); Cs, C2, C2h
(3 monoclinic); C2v, D2, D2h (3 (ortho-)rhombic); C4, S4, C4h, C4v, D2d, D4, D4h (7
tetragonal); C3, C6, S6, C3h, C6h, C3v, C6v, D3, D6, D3d, D3h, D6h (12 trigonal/hexa-
gonal/rhombohedral); T; Th; Td; O;Oh (5 cubic).

There are also groups for "one-dimensional materials", for two-dimensional surfaces, for
quasi- and liquid crystals, for flexible molecules (e.g. ethan, bullvalen).
Note the conceptual difference between crystal class (a group) and equivalence class (a
set of similar group elements).
Note: other axes can also occur for quasicrystals.
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