Chapter 11: Quantum Theory

11.1 Deviations of the real world from the classical approximation

11.1.1 Electromagnetic equilibrium energy distribution
Radiation Intensity M (energy/time/area) ~T* and

radiation density € (energy/volume) ~T (Tyndall*, Stefan? 1879, Boltzmann®);
Amax (Wavelength of maximum radiation intensity per wavelength) ~ /T (Wien® 1893)
at 1000 K: 2.9um; at 6000 K: 480 nm Note: v = ¢ «> d/dk = v¥/c-d/dv

for small v: de/dh ~ v* kT (Rayleigh-Jean$ ultraviolet catastrophe for large v)

Planck 1900 : de/di ~ v*/(€™"-1) is fully correct in all these respects, basis:
emission and absorption is a quantized process — 'ladle sugar with a spoon’

11.1.2 Photoelectric effect

Exin Of photoelectron v — A , independent of intensity
(A = work function, ionization potential)

(Einsteirf 1905: radiation IS quantized — ‘cube sugar’)
Ephoton =h-v=Mh2n)-2r-v)=h-o=ovinau

11.1.3 Sze of atoms
all atoms are of the order of 1A =1bm =100 pm (Clausius’, Loschmidt'©)
o h?me-¢*=1.66 A =n-Bohr (A. Haash 1910)

11.1.4 Bohr’s model of H-atom and the periodic system (1913)*2

Assumptions: Atomic and molecular transitions, states are discrete, stationary. Angular mo-
mentum is nh,n=1, 2, ... (two errors: rotation in 2d, smallest n = 1)

Then he could explain - a) some qualitative aspects and the basic order of the PS tfloseley
atomic number = nuclear charge/~1/\ 1oy); - b) extremely accurately the spectra of H and
He'

! Tyndall, 1820-1893, Ireland : physicist

2 Stefan, 1835-1893, Wien : physicist

% Boltzmann, 1844-1906, Wien : statistical physical theories

4 Wien, 1864-1938, East Prussia — West Germany — Bavaria : physicist

®> Rayleigh, 1842-1919, England : physicist

® Jeans, 1877-1946, England : scientist

" Max Planck, 1858-1947, Kiel — Berlin — Géttingen : theory of radiation, thermodynamics, president of the
German academy before and again after the war

8 Einstein, 1879-1955, Ulm — Ziirich — Prag — Berlin — Princeton : Brown's motion, theory of physical invariants
(so-called 'theory of relativity'), theories of photo-electric effect, of specific heat of solids, of gravitation, of
space and time, interpretation of problems of quantum theory, initiated development and control of nuclear
bombs

° Clausius, 1822-1888, Prussia (K&slin, Bonn) : mechanical theory of heat and gases, defined the entropy

191 oschmidt, 1821-1895, Austria : size of moleculesAvogadro number; cyclic formula of benzene

1 Arthur Haas, 1884-1941, Austria — Saxony — USA : atomic theory and its popularization

12 periodic System: J.IMeyer (1830-1895, Tiibingen : chemist) published a rather correct P.S. in his textbook
of 1864 to systematizethe chemical knowledge. Bl.éndelgjev (1834-1907, St. Petersburg : chemist) pub-
lished a less correct P.S. in 1869 to predict unknown elements.

¥ Moseley, 1887-1915 (WW1), England : physicist



11.1.5 Specific heat at low temperatures

vibrating diatomic: ¢~ (hv/kT)?- €™ (Einstein)

condensed matter: ¢~ T3 (Debye)

but if KT >> excitable component of energy: Cexcitable component = R/2
11.1.6 Prince de Broglie'sidea (1924)*

Matter has both particle and wave properties. A = 2zth/p = h/p

electron O "marticle view"
photon . paceview see Fig. 11.10

T "wave view" |:| miCcroscopic quantum object

11.2 Classical and Quantum M echanical Principles

Heisenberg (1925)™, Schodinger (19263, Born (1926)": Beginning of the “"complete theory
of objective reality" = Quantum Mechanics

11.2.1 Concepts

m 1) Macroscopic people perform macroscopieasur ements. Describe the human observa-
tions with "classical" concepts: m mass, e charge; x position, p momentum.

But: if one measures position, momentum, ... of mass, charge, ... one does not obtain a well
defined sharp result. In general one obtaingladefined distribution of results.

The total reality is not as the macroscopic sector of the world seems to be.

So: Substance (mass = enekgy ; charge is < or > 0 ;etc.) does not have a sharp value of
position, velocity,/ , ihas a "smeared value" distribution

m 2) Newton's® mechanics & Maxwell’s electrodynamics are a good approximation for the
world of "human dimensions".

dEf p =m dX/dt, laW: F = dp/dt, FCOI’]SQI’V. = _dE)ot/dX, Wlth‘Epot = e_|_ * €2 / 471?80I’, Ekm = p2/2n"

Hamiltorf®: [H = Exin + Epol. H (X,p,t) is constant in time for "conservative" forces and “closed
systems”.

“Duke de Broglie, 1892-1987, France : theoretician

> Heisenberg, 1901-1976, Germany : development and application of quantum mechanics in abstract matrix

form to atoms, nuclei, elementry particles, magnetism, superconduction, cosmos; uncertainity concept; nuclear

reactor

'8 Schrodinger, 1887-1961, Austria - Schwaben - Schweiz - Schlesien - Preussen - England - Irland : Statistical

theory, color TV, development and application of quantum mechanics in more concrete form of differential

equations, gravitational and field theories

Y Born, 1882-1970, Germany - Scotland : theoretician, formulation and interpretation of quantum theory

18 Newton, 1643-1727, England : founded physics as a ,fully developed science®; “Philosophiae naturalis prin-
cipia mathematica” = "Mathematical principles of science of nature” 1687; mechanics with ,Galilei-Newton-
Relativity“; gravitation (Hooke); differential calculus (Leibinz); "Opticks” including some chemical concepts

¥ Maxwell, 1831-1879, Scotland - England : kinetic theory of gases, vector and tensor analysis, electromagnetic
field theory

% Hamilton, 1805-1865, Ireland : improved the theory of mechanics and optics (extremal principles, Hamilton's
energy function); invented the quaternions as a noncommutative extension of the complex numbers, which are
now used to describe the spin



Newton’s definition and law now read symmetrically : |dx/dt = 8H/6p and dp/dt = —6H/dx

(x,p), (9, ?), (t, E) are classically conjugated pairs of variables.
Development, propagation in time iswell determined: causality.

m 3) Classical observables — linear, Hermitean operators:
X—=X,p—p

The "smeared trajectories, smeared orbits" are called "wavefunctions, distribution amplitudes,
state functions, state vectors, orbitals', they obey generalized laws:. instead of classical laws
for orbits, we have generalized laws for orbitals.

Classical laws for observables — laws of the operators:  Exjn — 1/2m - p - p,

Complete description of areal, objective system by an intermediate quantity:
trajectory — wavefunction.

Compare the description of easily measurable el ectric, magnetic and gravitational forces by

the “really existing” respective potential fields. - Plato's cave parable: we can easily see only
the shadow on a screen (observations of particle motions) of the real world (wave function,
potential)

Note: a single observation yields a single rational number?ﬁ(@) = (OxA)g component at o

(where A and A + g, g arbitrary function, are equivalent). The "real" object in classical
electrodynamics in the potential figdd, which is a whole "gauge-equivalestt of functions.

The "real" object in the world is a complex "wavefunction”, which can be multiplied by any
complex number, for instancEN o).

m 4) Theory shall be simple and applicable to reality. Therefore we introduce the following
choices:

a) Wavefunction shall be complex and analytic (differentiable): then many mathematical
theorems apply.

b) (Operators shall be linear and Hermitean

11.2.2 Heisenberg's Uncertainty

A typical experiment: Accelerate an electron (@) by an electric potential difference V to
determine velocity yand momentumgp

e-V=me- vei2 Pe= M- Ve classical mechanics & electrodynamics
Then determine the position at a specified time with a microscope:

AXe > hph Aph * Vph = Goh classical wave optics
Now account for the two most basic new laws of physics:
Einstein 1905: E =nfc equivalence (not convertibility 1) of inertial and
gravitational masses and energy
E=h-v guantisation of matter and energy
[0 For any observationAXe- APe > 2ph - Ppn = Gn/Vph "Mpn Coh = Bwfvph = h

Heisenberg 1927: alwayA8exp - ADexp > A@heo - Abhes = UP > 1/2



a, b are a conjugated pair of observables. The uncertainty product UP depends on the system
and its state (rule of thumb: UP~n - h for n quantum state)

UP =1h/2 only for the ground state of a harmonic oscillator (diat. mol., el.mag. oscillation)

A is the variance (standard deviation) of repeated measurements on the same type of system in
the same state:

Xi =YX =YY 5 Ax = VY (i =X)Y 1.
Note:((Ax)%) = (x*) —(x)*> (x?) (equal sign only for choice of Zero so that=X =0)
A reliable scientist believes in measured value X+ (2 to 3)- Ax , tabulated isX+ Ax .

A is obtained experimentally from an ensemble. But the A from an "absolutely accurate"
measurement series on a “completely prepared” ensemble of equivalent systems is the quan-
tum property of each single system!

Confining a system withinx causes a momentum smearing Ap > h/2Ax

and a kinetic energy Ap%2m = h?/8mAx® (zero point energy)

11.2.3 The general theory

m a) A well defined subsystem of the world, e.g. an “isolated” molecule (but note: no system
is really isolated, particularly when being investigated) is completely represented by its
state vecton)j (1

al) If p,Oand Y, Oare states of systemy|ys; 0+ ¢|P20is also a possible statsuperposi-
tion principle). The two states need not have the same energy, etc.

a2) If the stateyl; 0 = |10 is represented by a comple functigfx) then the probability of
measuring the discrete valugof the smeared property x is; W [y(x;)] (Born'sprob-
ability interpretation).
m b) Every directly measurable quantiys represented by a linear Hermitean operator
bl) In the special case where propeaatis "sharp”, i.e. always has valug #&hen the state
[Waod fulfills  @e|yay 0= [wag a0
b2) Theexpectation value iX =>x; - W; / >W; = Ly [X|wi O/ Ly will
b
Remember Dirac's conventi: <flajg> = Idx £7(x) - acg(x)
a

m C) The basic law of nature is Heisenberg's commutator rel[a, b] = ih- ; where a, b are
classically conjugate properties.

— Aa-Ab > h/2 (uncertainty relation)

if a =a- thenbzihd/da

— dWP/dt =H-V/ih with H = Eyin + Epet  (time dependent Schrodinger equation)
Quantum causality: the time evolution of the state is well determined

(Since the measuring device is not known in every microscopic detail, the measuring re-
sult can only be predicted statistically)



cl) If the potential V(x,t) does not depend on t explicitly (no external time dependent pertur-
bation), some of the solutions of the Schrédinger equation are of the form

WX, D) =wy(x)y(t) with x(t)= B and E, y(x) obey the time independent S.E.
H(X)ow(x) = w(x) " E (E = eigenvalue of the energy operatpr

Such states have a well defined energy (AE = 0) and do not change properties in time
(stationary). Of course there are also exist other states, varying in time.

11.3 Summary

11.3.1 Classical physics

def: p=mv, law: F=dp/dt=-AV, potential V=e1&/r, T= ﬁ/Zm, H=V+T
definition ofconjugated variables a, 8H/0a = db/dt k&p, e&L, t&E)

basic law of motion: O0H/0b = — da/dt

1-particle state: give a and b atd(t) & b(t) determined by Newton-Hamilton’s law (trajec-
tory in phase space)

Virial theorem: For T ~pand V ~ F:
2T=nV— T=n/(n+2)-E, V=2/(n+2)-E
Examples: Coulomb and gravitational forces: T = —E = -0.5V

Harmonic or Hook forces: T=V=05E
Also holds for expectation values quantum mechanically. One electron” in a many
electron system ‘sees” a complicated potential, T=-V >> E
11.3.2 Quantum physics
Basis:AE=h-v=heo A=2ap E=mc¢® Ax=L A-v=C — AX - Ap~h
Concepts: observable variablelinear (!), Hermitean (!) operator
orbit, trajectory— orbital, wavefunction, state vector |W¥j(a)l= [@;(b) O=|i]
definition of commutatord,b] =a-b—-b-a basic law §,b] = ih -
a-representation: ¥ (a,t) <> Fourier transformation <> @ (b,t)

a—a=a and b—b=—h-9/da Eigenvalues of Hermitean operators
examples: ¥ (X,t) , X=X- and p=-ih-d/dx; are real. Eigenfunctions of different
E=H =V(x) -1/2m-d¥/dx? = ih-d/dt eigenvalues are orthogonal

Aa-Ab=n-h>h/2]  |dP/dt=HoP(x,)/ik

If dV/dt = 0, there exist stationary states:

W)=y e with E, y(x) from Hoy(x)=wy(x)" E
Eigenvalues d of operator d are the possible measured results

Eigenfunctions of d have a sharp observable variable value d: do =d = ay|d|y>/<yly», Ad=0.



Learning objectives

After careful study of this chapter you should be able
to:

(1) List the characteristics of black-body radiation
and explain how Planck’s hypothesis of the quantiza-
tion of energy explains them, Section 13.2(a).

(2) Explain how the characteristics of the heat
capacities of solids at low temperatures conflict with
classical physics but are explained by the quantum
theory, Section 13.2(b).

(3) Describe the experimental features of the

photoelectric effect, Section 13.2(c), and show how
the quantum theory accounts for them in terms of
photons, eqn (13.2.6).

(4) Describe the features of the Compton effect
and explain how quantum theory accounts for them,
Section 13.2(d). ’

(5) Summarize the evidence for the wave-nature
of matter, Section 13.2(e), and state the de Broglie
relation, eqn (13.2.8).

(6) Explain why atomic and molecular spectra
provide evidence for quantization, Section 13.2(f).

(7) Write the Schridinger equation for a general
potential energy, eqn (13.3.1). v

(8) Show that the solutions of the Schrodinger
equation for a free particle lead to the de Broglie
relation, eqns (13.3.2-4).

(9) Describe the relation between the curvature of
the wavefunction and the kinetic energy of the

particle it describes, Section 13.3(a).

(10) State the Born interpretation of the wavefunc-
tion, Section 13.3(b).

(11) Justify and write the normalization condition,
eqn (13.3.7), and normalize a wavefunction,
Example 13.3.

(12) List the conditions that must be satisfied by a
wavefunction for it to be acceptable, and explain
how these lead to quantization, Section 13.3(c).

(13) Explain what is meant by an operator, an
eigenvalue equation, an eigenvalue, and an eigen-
function, eqn (13.4.3).

(14) Explain the relation between operators and
observables, eqn (13.4.4).

(15) Write the operator for the linear momentum,
eqn (13.4.5), and the position of a particle.

(16) Write the wavefunctions for a particle in a
definite state of linear momentum, Section 13.4(a).

(17) Explain the term superposition and its inter-
pretation, Section 13.4(b).

(18) Explain the significance of an expectation
value, Section 13.4(b), and calculate its value for a
given wavefunction, Example 13.6.

(19) State the uncertainty principle, eqn (13.4.8),
and justify it in terms of a superposition of
wavefunctions, Section 13.4(c).

(20) Explain the meaning of the expression
complementary observables, Section 13.4(c).



