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Chapter 12. Simple Applications 
12.1 Motion in 1 dimension and tunneling 
12.1.1 Linear motion 
ψ(x)" = 2m (V(x)–E) ψ(x) (T = E-V , curvature ~ kinetic quantum energy) 
T = ∫dx · ψ* · (–1/2m) ψ" = +(1/2m) ∫dx · |ψ'|2  >  0 (T ~ slope squared of ψ) 

E < V(x): classically forbidden:  ψ ~ exp (±x√2m (V–E) )      exp. decay (wave end) 
E > V(x): classically allowed: ψ ~ exp (± ix√2m (E–V) )    oscillation (wave) 

12.1.2 Tunneling through a barrier 

Tunnel probability ~ exp (–√8mHL2 ) = mHLe 22−                           

m = mass of particle,   H and L = height and length of barrier    (Fig. 12.10) 

12.2 Electrons in boxes 
12.2.1 The one dimensional case 

Second order linear D.E.: general solution with two parameters, f(x) = c1 · f1(x) + c2 · f2(x)  . 

Here, for V(x) = const,  f = cos(kx) and sin(kx)   or   exp (±ikx) = cos (kx)  ± i · sin (kx)  

Eigenvalue equation: D2◦f = f ·λ has three variables c1, c2, λ 
Physical boundary conditions for confined particles: f(left) = f(right) = 0 

One boundary condition fixes c1 : c2  (shape of state function) 
here: f = 0   at   x = 0   →   c1 : c2 = 0 : 1 

Second boundary condition: discretizes the eigenvalues 
 numerate En, fn  by some consecutive numbers n ("quantum numbers") , 

here: k = nπ/L ,   n = 1, 2, 3, …  

ψn = sin (nπx/L),   En = n2π2/2mL2    (Fig. 12.4) 

12.2.2 Cyanine dyes 

Conjugated carbon chains with nonalternating, equal bond lengths: The present orbital model 
has no problems, but the (localized 2e-2c)-Valence Bond-restriction cannot represent it: VBs 
loophole is “use two `resonating´ graphics“ for the stationary state of this “mesomeric sys-
tem”.  

For equal bond lengths, the nuclear attraction felt by electrons described by π orbitals is com-
paratively constant (does not apply for `σ-electrons´ or for alternating bond lengths).  

Length of a box corresponding to chain “with d double bonds”:  
L  ≈  (2d + 1) · D, where D = atomic distance (so-called bond length) 

Highest occupied molecular orbital HOMO has quantum number n = d, lowest unoccupied 
molecular orbital  LUMO has n = d + 1. Smallest excitation energy ∆Ε = E(L,d+1) - E(L,d) = 
ω = h · ν = h · c/λ 

Longest wave length (längstwellig) first absorption line λ = hc / ∆E,  ∆E=π2/2 me D · L 

λ1st abs. ~ L   (cyanine dyes)                               See also the "German" Figs. page 
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12.2.3 Electron in a 3-dimensional box    (Figs. 12.7/8)  

ψ nv = sin(nxπx/Lx) · sin(nyπy/Ly) · sin(nzπz/Lz) 

E nv = π2/2m · (nx
2/Lx

2 + ny
2/Ly

2 + nz
2/Lz

2) 

nv = quantum vector, reciprocal point, crystal momentum. 

Symmetry leads to degeneracy!  -  σ and π states  

•  a) Electron in a cube (atom, CH4) 
nr  = (1,1,1): one “s-type” state 
nr  = (2,1,1) or (1,2,1) or (1,1,2): triplet of degenerate “p-type” states  
CH4 valence shell of 4 bonds has two IPs at 14 (p-type) and 23 eV (s-type).  

•  b) Electron in a long box: different lengths give rise to different kinetic zero point energies 
and to different “energy ladders”.  

   b1) Linear molecule has 1 long and 2 short extensions - “σ-ladder” and a doubly degenerate 
“π-ladder” starting a higher energy, with only few σ-levels between the “dense π-band”.  

   b2) Planar molecule has 2 long and 1 short extensions - a “σ-net” and a higher “π-ladder or 
-net” 

12.3 Harmonic oscillation (vibration) 
V = k/2 · (∆R)2, ψn = Pn(∆R) · exp(– 1/2 (∆R)2 √µk ), En = (n+1/2) ω , ω = √k/µ  ,  n = 0, 1,  … 
Pn is a hermite polynomial:  
P0 = 1, P1(x) = x, P2(x) = 2x2 - 1, P3(x) = 2x3

 - 3x, P4(x) = 4x4 -12x2 + 3, etc.  
Pn is gerade/ungerade for n even/odd. For large n, Pn

2 oscillates rapidly between 0 and twice 
the classical probablity 1/v =  )∆− Ε(2/ 2Rk µ  

Separation between 2 vibrational levels is just ∆Εn,n+1 = ħω = µk/  (in au).  
Selection rule for vibartions (see §15.5): absorption/emission of electromagnetic radiation is 
possible only between adjacent states of different g/u symmetry.  

Several dimensions: E nv = ∑i (ni + 1/2) √ki/µi 

d-fold symmetry results in degeneracy; zero-point energy is Eo = d/2 · ω (Fig. 12.13) 

Coordinate Transformation and Reduced Mass  

(x1, x2) → R=x2-x1 ,                  S=(M1x1+ M2x2) / (M1+M2)  
            (Relative separation)  (Schwerpunkt, center of gravity) 

In coordinates (x1, x2), kinetic energy is a simple sum of squares (according to Pythagoras), 
but potential energy depends simply on R, which is a complicated square root of x-
coordinates in 3 dimensions, and is independent of S.  Therefore transform to (R, S)-
coordinates:  

V→ V(x1,x2)• = 0(S) + V(R)•   and  

T → 2
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Reduced mass µ = (M1 · M2) / (M1+M2) < M1, M2 

If  M1 = M2 :   µ=M/2  ;  if   m << M   ,  µ ≤ m 
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12.4 Rotation 
12.4.1 Planar Rotation  

Electron along a ring, rotation of a molecular group  around an axis  (CH3; NH3 in ammine 
complexes): no left and right boundary, but ψ(0) = ψ(2π) , ψ’(0) = ψ’(2π) connection condi-
tions. 

Angle ϕ = ϕ + 2nπ is “infinitely indeterminate”. Because of this mathematical subtlety, the 
physical ∆ℓ and the physical T0 can be zero.  

ψm = eimφ,   Em = m2/2µR2,     m = 0, ±1, ±2, …   ( degeneracy!) ℓz = mħ ℓz = –iħ ∂/∂φ 
I = Σi MiRi

2 = µR2 = moment of inertia 
Aromatic Rings: π-electronic states along planar cyclic N-membered carbon chains with 
nonalternating bond distances D: 2πR=N · D.  
1 electron per C: System (CNHN)q has (N-q) π-electrons. The HOMO has quantum number 
mHOMO=[(N-q+1)/4].  
Accordingly the valence electron has energy ε = (2π2/D2) · (mHOMO(N)/N)2.  
Note: 1) One electron more than fitting into a closed shell according to the Pauli principle is 
loosely bond (examples: Na, C6H6

-). 
2) A hole in a stable HOMO will be filled: stable orbital ⇒  filled shell (not vice versa). An 
orbital is stable if it has low potential energy (C6H6, C5H5

-, but no longer C4H4
2-; Na+, Ne, F-,  

(O2-)An
+, but no longer O2- in vacuum) and/or low kinetic energy (large ring: C6H6, but not 

C4H4).  
A stable π-ring orbital will house up to 4n+2 electrons (Hückel-Rule), especially for n=0 and 
n=1.  

12.4.2 Rotation in 3-dimensional  space, angular momentum 

ℓ = r × p → ℓ = r × p  ,   [ℓx, ℓy] = i ℓz 

ℓ depends on r and p; while x, y, z are ‘independent’, x and px are ‘interdependent’ through 
Heisenberg’s relations. Therefore ℓx and ℓy are also ‘interdependent’.  The 3-dimensional an-
gular momentum vector has only 2 well-defined components, because ℓ = r × p and Heisen-
berg's smearing ∆x · ∆p > ½ · ħ 

|ℓ| =  ħ · √(l+1)l ,    ℓz  =  m · ħ,   m = l,  l – 1, …,   –l (Fig. 12.25) 
l = hole or half number:  eigenfunction single or double valued (±√ ) 

|ℓ |◦Ylm (θ,φ) = Ylm ·  ħ · √l(l+1) ,   ℓz ◦Ylm = Ylm · ħ · m ,   spherical harmonics  Ylm ~ eimφ 

The complex spherical harmonics have well-defined ℓz-component. They are the simplest 
basis for the discussion of angular momenta and magnetism in a magnetic field (note: electron 
has m and e, a rotating electron has ℓ and magnetism).  
Combine two Y-functions with same l into real Z-functions: Ze,±m = (Ylm ±iYl-m) / 2±   . 
These are the simplest basis for discussion of electrons ‘oriented in an electric field’. They 
have no sharp ℓ-component in any direction. 

Rotational energy:  El,m= l(l+1) / 2I + m2 · ∆(1/2I) (Tab. 12.3) 

I = moment of inertia ;   ∆(1/2Ι)  =  difference of  `rotational constants´ for different sym. axes 

For molecules: l,j → J  ,  and   m → K 
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12.5 Angular Momentum Vector Coupling 
ℓ-vector lies somewhere on a cone ,  two ℓ-vectors have a fixed angle between them 

Angle of (z-axis, ℓ):   cos θ  = m / √l(l+1) 

For a p-electron: l = 1, m = 0 or ±1:  θ  = 90° or 45° (Fig. 12.26) 
For a spin: l = |m| = 1/2:      θ = acos √1/3 = 54.74° = magic angle 

Pseudoparallel triplet-spins:            or                                      or           (Fig. 12.29) 
                                       α(s1) α(s2) ;  α(s1) β(s2) + β(s1) α(s2) ; β(s1) β(s2) 

Spinvectors are not vertical! They cannot be really parallel! Pseudoparalleles spins point to 
“the same side”, e.g. to `right up´ and `right down´! 
Pseudoparallel spins have permutation-symmetric two-spin-functions. 

An up-spin and a down-spin is half triplet (see above) , half antiparallel singlet (          ): 
α(s1)β(s2) - β(s1) α(s2) = “αβ-βα” . This function is permutation-antisymmetric.  

Charge position space and spin direction space refer to the same real 3D space. 

 
 


