Chapter 12. Simple Applications

12.1 Motion in 1 dimension and tunneling

12.1.1 Linear motion
y(x)"=2m (V(x)-E) y(x) (T =E-V, curvature ~ kinetic quantum energy)
T =[dx - y* - (-=1/2m) y" =+(1/2m) [dx - [y'|* > 0 (T ~ slope squared of )

E < V(x): classically forbidden: v ~exp (£xV2m (V-E) )  exp. decay (wave end)

E > V(x): classically allowed: v ~exp (+ ix\2m (E-V)) oscillation (wave)

12.1.2 Tunneling through a barrier T L

Tunnel probability ~ exp (—V8mHL? ) = ¢ 2:¥2"7 il

m = mass of particle, H and L = height and length of barrier (Fig. 12.10)

12.2 Electrons in boxes

12.2.1 The one dimensional case

Second order linear D.E.: general solution with two parameters, f(x) = c; - fi(x) + c2 - f2(x) .
Here, for V(x) = const, f= cos(kx) and sin(kx) or exp (£ikx) = cos (kx) %1 - sin (kx)

Eigenvalue equation: D%f = f -\ has three variables ¢y, ca, A
Physical boundary conditions for confined particles: f(left) = f(right) = 0

One boundary condition fixes c; : ¢, (shape of state function)
here: f=0 at x=0 — c;:¢c=0:1

Second boundary condition: discretizes the eigenvalues
numerate E,, f, by some consecutive numbers n ("quantum numbers") ,

here:k=nn/L, n=1,2,3, ...

w=sin (nnx/L), E,= n’r*/2mL? Fig. 12.4
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12.2.2 Cyanine dyes

Conjugated carbon chains with nonalternating, equal bond lengths: The present orbital model
has no problems, but the (localized 2e-2c)-Valence Bond-restriction cannot represent it: VBs
loophole is “use two ‘resonating” graphics® for the stationary state of this “mesomeric sys-
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tem”.

For equal bond lengths, the nuclear attraction felt by electrons described by Tt orbitals is com-
paratively constant (does not apply for “0-electrons” or for alternating bond lengths).

Length of a box corresponding to chain “with d double bonds™:
L = (2d+1) - D, where D = atomic distance (so-called bond length)

Highest occupied molecular orbital HOMO has quantum number n = d, lowest unoccupied
molecular orbital LUMO has n =d + 1. Smallest excitation energy AE = E(L,d+1) - E(L,d) =
w=h-v=h-c/A

Longest wave length (lingstwellig) first absorption line A = hc / AE, AE=TZ/2m.D - L

Aistabs. ~ L (cyanine dyes) See also the "German" Figs. page



.

12.2.3 Electron in a 3-dimensional box (Figs. 12.7/8) lila

v 5 = sin(nymx/Ly) - sin(nymy/Ly) - sin(n,nz/L,) blau-gruin
E_=n"/2m " (n/L + nyY/Ly” +1n,7/L,") purpur (cyan)
i = quantum vector, reciprocal point, crystal momentum. EE;;E:,:;)

Symmetry leads to degeneracy! - o and = states

. rot grun
* a) Electron in a cube (atom, CHy) (red) (green)
n =(1,1,1): one “s-type” state 9
i =(2,1,1) or (1,2,1) or (1,1,2): triplet of degenerate “p-type” states gelb (yellow)

CHy,4 valence shell of 4 bonds has two IPs at 14 (p-type) and 23 eV (s-type).

* b) Electron in a long box: different lengths give rise to different kinetic zero point energies
and to different “energy ladders”.

bl) Linear molecule has 1 long and 2 short extensions - “0O-ladder” and a doubly degenerate
“rr-ladder” starting a higher energy, with only few 0-levels between the “dense T-band”.

b2) Planar molecule has 2 long and 1 short extensions - a “O-net” and a higher “T+ladder or
-net”

12.3 Harmonic oscillation (vibration)

V =Kk/2 - (AR)?, y, = Po(AR) - exp(— 1/2 (AR)*Vpk ), Ex=(n+12) ® , @ =Vk/p , n=0, 1, ...
P, is a hermite polynomial:

Po= 1, Pi(x) = X, Po(x) = 2x*- 1, P3(x) = 2x° - 3%, P4(x) = 4x* -12x*> + 3, etc.

P, is gerade/ungerade for n even/odd. For large n, P, oscillates rapidly between 0 and twice

the classical probablity 1/v = /4 / (2E - kAR?)

Separation between 2 vibrational levels is just AE, ,+1 = hw= /k/¢ (in au).

Selection rule for vibartions (see §15.5): absorption/emission of electromagnetic radiation is
possible only between adjacent states of different g/u symmetry.

Several dimensions: E A= di(n+1/2) \/ki/ L

d-fold symmetry results in degeneracy; zero-point energy is E, =d/2 - (Fig. 12.13)
Coordinate Transformation and Reduced Mass R
M M,
(X], Xz) - R=Xx»,-x; N S=(M1X1+ MzXz) / (M1+M2) xil /\< .;C
(Relative separation) (Schwerpunkt, center of gravity) ' S ’

In coordinates (x;, X7), kinetic energy is a simple sum of squares (according to Pythagoras),
but potential energy depends simply on R, which is a complicated square root of x-
coordinates in 3 dimensions, and is independent of S. Therefore transform to (R, S)-
coordinates:
V- V(x1,x2)* = 0(S) + V(R)* and

14> 1 a2 -t 4 MM, d?
2M; dx? 2My dx3 2(M; +My) ds? 2M;IM; ¢Rr?

T—>_

Reduced mass = (M; - My) / (M;+M;) <M, M,
If Mi=M;: p=M/2 ; if m<<M , p<m



12.4 Rotation
12.4.1 Planar Rotation

Electron along a ring, rotation of a molecular group around an axis (CHj3; NH; in ammine
complexes): no left and right boundary, but P(0) = P21 , Y’(0) = Y’ (2M) connection condi-
tions.

Angle ¢ = ¢ + 2nTtis “infinitely indeterminate”. Because of this mathematical subtlety, the
physical Al and the physical Ty can be zero.

Ym=e"" En=m’2uR?>, m=0,+1,+2,... (degeneracy!) (,=mh £, =—ih 0/0p
[=% MR = pRz = moment of inertia

Aromatic Rings: T-electronic states along planar cyclic N-membered carbon chains with
nonalternating bond distances D: 2TR=N - D.

1 electron per C: System (CyHy)? has (N-q) Teelectrons. The HOMO has quantum number
myomo=[(N-q+1)/4].

Accordingly the valence electron has energy € = (216/D?) - (muomo(N)/N)*.

Note: 1) One electron more than fitting into a closed shell according to the Pauli principle is
loosely bond (examples: Na, C¢Hg).

2) A hole in a stable HOMO will be filled: stable orbital = filled shell (not vice versa). An
orbital is stable if it has low potential energy (CsHg, CsHs', but no longer C4H42'; Na', Ne, F,
(0*)A,", but no longer O* in vacuum) and/or low kinetic energy (large ring: C¢He, but not
C4H4).

A stable Tering orbital will house up to 4n+2 electrons (Hiickel-Rule), especially for n=0 and
n=1.

12.4.2 Rotation in 3-dimensional space, angular momentum
C=rxp—t=rxp, [L, ]=1L

€ depends on r and p; while X, y, z are ‘independent’, x and px are ‘interdependent’ through
Heisenberg’s relations. Therefore £« and €, are also ‘interdependent’. The 3-dimensional an-
gular momentum vector has only 2 well-defined components, because £ = r X p and Heisen-
berg's smearing Ax - Ap> "2 - h

ll|=h- NI, &, =m-h, m=1 [-1,.. -/ (Fig. 12.25)
[ = hole or half number: eigenfunction single or double valued (+V)
1€1°Yim (0,0) = Yim - h-VI(+1), 6, °Yim=Ym-h-m , spherical harmonics Yy~ ™

The complex spherical harmonics have well-defined {,-component. They are the simplest
basis for the discussion of angular momenta and magnetism in a magnetic field (note: electron
has m and e, a rotating electron has { and magnetism).

Combine two Y-functions with same 1 into real Z-functions: Ze+m = (Yim 21Y1m) / V2 .
These are the simplest basis for discussion of electrons ‘oriented in an electric field’. They
have no sharp {-component in any direction.

Rotational energy: Ejn=[(I+1)/2I + m* - A(1/2]) (Tab. 12.3)
I =moment of inertia ; A(1/2l) = difference of ‘rotational constants” for different sym. axes

For molecules: /j —»J , and m — K



12.5 Angular Momentum Vector Coupling

C-vector lies somewhere on a cone , two £-vectors have a fixed angle between them

Angle of (z-axis, £): cos® =m/V(I+1)

For a p-electron: 1=1, m =0 or £1: 6 =90° or 45°

For a spin: 1 = |m| = 1/2:
Pseudoparallel triplet-spins: 3 or

0 = acos V1/3 = 54.74° = magic angle

><{ or
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(€0 a(s2) 5 asi) B(s2) + Blsi) alsa) ; B(s1) B(s2)

Spinvectors are not vertical! They cannot be really parallel! Pseudoparalleles spins point to

“the same side”, e.g. to "right up” and ‘right down"!
Pseudoparallel spins have permutation-symmetric two-spin-functions.

An up-spin and a down-spin is half triplet (see above) , half antiparallel singlet ( )7 ):
a(s1)B(s2) - B(s1) a(sz) = “aB-Ba” . This function is permutation-antisymmetric.

Charge position space and spin direction space refer to the same real 3D space.

Learning objectives

After careful study of this chapter you should be able
to:

(1) Write down the Schrodinger equation for a
particle in a box, eqn (14.1.3), justify and specify the
boundary conditions, and find the allowed energies
and wavefunctions, eqn (14.1.9).

(2) Describe the principal features of the solutions
of a particle in a box, Section 14.1(b).

(3) Write down the Schrddinger equation for a
particle confined to a rectangular surface, eqn
(14.1.11), and use the separation of variables
technique to find its solutions. '

(4) State the meaning of degeneracy, Section
14.1(c).

(5) Describe the procedure for calculating the
wavefunction of a particle in a system with potential
barriers, Section 14.1(d), and find the wavefunctions
in the case of a rectangular barrier, Example 14.2.

(6) Explain how tunnelling occurs, and state how the
probability of tunnelling depends on the mass of the
particle and the width of the barrier, Section 14.1(d).

(7) Write down the Schrddinger equation for a
harmonic oscillator, eqn (14.2.1), obtain the form of
its solutions at large displacements, and describe how
the full equation is solved, Section 14.2(a).

(8) Write down an expression for the energy levels
of a harmonic oscillator, eqn (14.2.4), and calculate
their separation.

(9) Describe the wavefunctions of the harmonic
oscillator, and use the properties of Hermite polyno-
mials to calculate its properties, Example 14.4.

(10) State and apply the virial theorem, eqn

(14.2.11).

(11) Calculate the probability that an oscillator
will be found at classically forbidden displacements,
eqn (14.2.12).

(12) Write down the Schrodinger equation for the
motion of a particle on a ring, eqn (14.3.2), justify
and specify the cyclic boundary conditions, and find
the wavefunctions, eqn (14.3.4).

(13) Explain the origin of the quantization of
angular motion, and write expressions for the
permitted values of its z-component, eqn (14.3.6).

(14) Write down the operator for the
z-component of angular momentum, eqn (14.3.9).

(15) Write down the Schrodinger equation for
rotation in three dimensions, eqn (14.3.17).

(16) Show that the Schroédinger equation for
rotation is separable, eqn (14.3.18).

(17) Write down the expression for the energy of a
particle on a sphere in terms of its angular
momentum quantum number, eqn (14.3.22).

(18) Write down expressions for the magnitude of
the angular momentum, eqn (14.3.24), and the
permitted values of its z-component, eqn (14.3.25).
See also Box 14.3.

(19) State the meaning of space quantization and
explain the significance of the Stern—Gerlach
experiment, Section 14.3(g).

(20) Explain the meaning of spin, and state the
spin properties of an electron, Section 14.3(h).

(21) Specify the vector model of angular momen-
tum, Section 14.3(i).

(Fig. 12.26)

(Fig. 12.29)



