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Chapter 13: Atoms
13.1 Hydrogen-like states (Fig. 13.5, 10, 14, 15, 16, 20, 23)

lonic atom with 1 electron (-€) and a nucleus (+2).
Note: force = - Q; - Q / I%; potential energy = work = force * pathdx - F = Q- QJr

V=-2ZIr, T=p2me=p%2me+ 2ma? = Trag + Trot

In Cartesian coordinates: T is simple, V is complicated (1 over root);
In spherical coordinates: T looks complicated, V is simple.

[V(r) - +Traa(r) + B(W)/2ma® — E]- w(r,w)=0  (w = angles, 'Winkel' of electron position)
t%2md? is the centrifugal potential, the centrifugal forcé¥mer® (~mv#/r):

r can be represente s of different
variables, th um, an ct.

Here a trick: to achieve separation of w and r, multiply witlr2m

[2ma? (V(r) - +Traa(r) — E) +E(W)] - y(r.w) = 0 — yum = Ru(r) * Yim(W)

For (+Ze) — (—e) systems: n #nl , n =no. of radial maxima | = 0(s), 1(p), 2(d), 3(f) ...
ENESZ2md2ie; <r>, = [3r7 -1 (I+1)]/2mZ  (for low. levels of high-Z atoms: set Z ¥

. e (' n = energy-, principal-, main-, Haupt- g.n.;
Rn(r) ~ garger 1~ exp(-ry- 2Em.) | = ang. mom., serial-, secondary-, Drall-, Neben- q.n.;
[Fsmall r:~r' m = magnetic-, directional-g.n.;

me = mass of electron)
Spectrum: hv = Ens s — By (i = initial, f = final; selection rule of Laporte=1; + 1) .

Note the differences between the physical concept of angular moménadirits operator £,

its measurable or measured valijeahd of the angular momentum quantum number |.

An s-orbital has its largest density in the nucleus, an s electron does not rotate, it is distributed
in any direction from left to right through the nucleus. The highest ofmiat-density is at

the attractive nucleus. The largest amount of probability is in the outer shefiahbout one

order of magnitude less in each innermore spatial shell.

The outermost radial shell of an nl-orbital has number n with% ¢For H-1s:r =1.5 Bohr;

VIFPO= +/3=1.75 Bohr; I =1Bohr). The innermost spatial shell has main quantum number

[+1.
Thereal linear combinations haveangular nodes. The subscript index represents the main
Cartesian power of the angular behavior, for instamce: (27-x*y?)/r*. Any real function

has zero average for all angular momentum components; only complex functions have non-
vanishing{; andy; (magnetic moment).

13.2 Neutral many-electron atoms

En = —Zst/2(n-8)% <r ~n%Z - (n+l) (avery rough rule of thumb)

Z«t = Z — no. of "inner" electrons — no. of "same" electrons / 3 (Fig. 13.21, 22)

o) = quantum defect: fors ~ 1, forp ~%  (screening, penetration or diving effect)
Concerning ionic or innermore orbitals, the energy order is less I-dependent (as in hydrogen).

OFdErar (shell and subshell) orbifoREEIECFON"ENErgies in neutral! atoms with Z values

1-2 3-10 11-18 19-36 37-54 55-86 87-118=Z7
1s << 2s<2p << 3s<3p<< 3d4s<d4p << 4d5s<5p << 4f=5d~6s<6p << 5FR6d4~7s<Tp



2

Note: in cations, the higher the charge, the more hydrogen-like the order, (n-1)f < nd < (n+1)s.

OFderof (shell and subshell) Brbitalifadii : increase with n, and then with | (for valence orbi-

tals note: 2s=2p, ns<np ; 3d<4s, nd<(n+1)s ; 4f<Ss, nf=~(n+1)s: secondary periodicity in the

PS). If there are many occupied orbitals, the density minima of some of them are filled by the
maxima of the others: the total density decreases very smoothly without pronounced visible

radial shell structure. Valence density is very small. The x-ray experiment “sees” the electron
density maximum at the nucleus.

13.3 The independent particle or orbital approximation

V contains Z—e attraction, and
e—e Repulsion: +1(x1—Xx)? + (Yi—y»)* + (z—25)° — no variable separation possible
Orbital-model: lP(X]_,y]_,Z;|_,9;|_,X2,y2,22,92) ~ Ra(rl) . Ya(W]_) : Sa(el) . Rb(l'z) . Yb(Wz) : Sb(ez)

S(0) is the function describing the spin direction distribution. Note: different indices for elec-
trons and orbitals; V contains no spin, but ¥ does; 6 = spin angles.

A single electron has kinetic energy and feels attraction by the nuwidugpulsion by the
other electrons. The so-called orbital energy E(orb) = T ¥Rep. Total Energy is not the
sum of orbital energies, because that counts the repulsion twice.

(note the signs of Rep)
Since there are no spin-energy contributions at the nonrelativistic level of approximation
(very good for light atoms), the spin-variables are separable.

13.4 Symmetry
H(1,2) = T(1) + T(2) + Wuc(1) + Viue(2) + /]| = H(2,1)

The Hamiltonian does not change upon coordinate-permut this
Eocrdinatestranstonmation; the system described b .

H(1,2)° Wo(1,2) =V«(1,2) E, Fromsymmetry: H(1,2) = H(2,1), there follows
H(2,1)° Wp(1,2) = Wp(1,2)- Eg for nondegenerate states: E= Es, ¥, = const * g

If everything can be made real: ¥(1,2) =+ or — ¥(2,1) .
State function of several identical particles is either permutation-symmetric or permutation-
antisymmetric.

13.5 Pauli Exclusion Principle

for two equa (s=1/2: e,p,n) ; ¥(1,2) = #(2,1) is excluded;
for two equa (s = 0,fHe, hv) if - P(1,2) = ¥(2,1) is excluded:
for two different particles, any combinatiogitg1,2) + ¢'¥'(2,1) is admissible.

A relativisticalli acceptable two-particle wavefunction can only be constructed

Convention: 1 means Y1,z (fors =0) or xy1,21,01 (for s = 1/2)

Note: y(X,y,2.09) = Wam(0s) = w(X,Y,Z)s = Wnims
wheren=1.0,£=0...n~-1,m={...—{,s=1/2,-1/2 and

X,y,Z 0 (-0, +00) Oor r [0, ], 6, 0s0[0, 1, o ¢s][0.27 ]
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13.6 Consequence of Pauli exclusion principle within the orbital approximation
13.6.1 Two-particle wave functions

One orbital ¢, for two spinless particles: ¥ = @4(1) - 0a(2) , admissible for two bosons
Energy: E = 2(T+V), + Rep(a’,&)

Two spin-orbitals @a @p : Y+ = @a(1) ep(2) + ¢p(1)9a(2) , admissible only for two bosons (photons)
Energy: E = (T+V)a + (T+V), + Rep(a?,b?) + Rep(ab,ab)

or Vo= 04(1) - 0p(2) —op(1) - 9a(2) , admissible only for two fermions (electrons)
Energy: E = (T+V)a + (T+V), + Rep(a%,b?) — Rep(ab,ab) &b’ vanishes for different spins)

Note: ¢, andgp may bel,-a andP,B; or -0 andPp-a; or Yy-a andp-B. Hered means a
pure position fungon, and ¢ a spin-position function, a so-called spin-orbital.

The particle density ofpe-0p+ Gp-92) is, in both casesh>+ dy°. But the particlgpair density

differs from d.2-dp° + P02 by £ 2.0 dadb. The so-called overlap densitg.dp, of two

usual orbitals of the same atom or molecule has positive and negative (i.e. increasing and de-
creasing) contributions, which exactly sum up to zeygd,= O.

At the level of the nonrelativistic approximation, there is no spin-contribution to the energy!
But, because of Pauli-exclusion, for 2 electrons: a symmetric position function prggbgt (
or Ya, + WpPla) must be combined with an antisymmetric spin direction function prodfct (

- Ba) or, vice versa,d(zdp - Ppda; NOt dada) with (aa or ay + Ba or BR).
13.6.2 Sater Determinants

Slater determinant is the simplest way to guarantee the Pauli principlg, bt ¢. be three
spinposition-orbitals.

) 0D ¢p@ o) _. different orbitals
5022 (D 0c(2) =(abd Sifterent clect
¢a(3) ¢b(3) ¢c(3) | dirrerent electrons
Since electrons are completely indistinguishable (a nonclassical property) every electron ap-
pears in every orbital. n different electrons 1, 2, ... “in” n different orbitals a,b. ... with differ-
ent indices!

| a0,2p | - EEI2AFIRIEHINSIAGIEY); | ac.be | - EEIREREIEKEEPIRRHPIED;

| a0,bp | : E = hathy+ K (| a0, bB | = | ba,a | is spin-singlet and spin-triplet)

ColicmBireplisionibetveeniivaectrons = Coulomb repulsion between two orbital clouds
modified by + or — "exchange pair Cloudh

Summary: Two-electron functi ibute
. either space-part symmetric and spin-part antisym y
, Or space-part antisymmetric and spin-part sym

et). 'Anti-pairing energy' is@KThe + and — signs are a 'wave' phenome-
non; the spatial pair-distribution determines the Coulomb energy; the connection between energy
and spin comes via the Pauli exclusion.

The form (permutational symmetry) of the spatial two-electron function determines a) the
energy (+ or K correction of the e-e Coulomb repulsion), and b) the admissible spin-
coupling (a1f2£p102) through the Pauli principle: indirect relation between (lower) energy and
(pseudo-parallel) spin coupling.



13.7 Aufbau principleand Hund’srule

IFEASS8E: |owest energy for BotISIECHONS ERISVEIBIITR »~~ Sl

Hund’s Rule for the orbital approximation
If ea= oy |owest energy for both electrons at levels aand b with pseudoparallel spin

13.8 Magnetism

mass and mechanical spin: M and |; charge and magnetic spin moment: Q and p with

WS QIM(@I28) (magnetic/mechanical moment ~ charge/mass : gyromagnetic ratio)

g = 1 for "orbit motion", g = 2 for "spin motion"

The magnetic moments of orbiting and spinning electrons interact with a magnetic field:
AEpwa~L- B

A moving charge is perturbed by a magnetic fielHg, ~ r* - B

13.9 Relativity

"Velocity of electrons near nucleus" issvZ au. Effective mass of electrons mess = me/\/(l-
v/c) is relativistically increased by a fraction of ¥4(Z/ayhere ¢ = 137 au.

s-orbitals are relativistically contracted and stabilized by a fraction proportional té (Z/c)

p-levels are split (spin-orbit coupling) into a lower p1/2 (spherical, complex orbital) and two
higher p3/2 (nearly spherical orbitals).

d- and f-orbitals are better shielded by contracted s- and p1/2-orbitals: they are destabilized,
expanded and split into two different levels.

This all is of eminent importance for the chemistry of medium and heavy elements (inorganic

and metal organic chemistry), see modern textbooks of inorganic chemistry.

Learning objectives

After careful study of this chapter you should be able
to:

(1) Describe the main features of the spectrum of
atomic hydrogen and state the Ritz combination
principle, Section 15.1(a).

(2) Write down the Schrodinger equation for the
hydrogen atom in centre of mass coordinates, eqn
{15.1.7), and show that it can be separated into
radial and angular equations, eqn (15.1.8).

(3) State how the energy levels of hydrogen
depend on the principal quantum number, egn
(15.1.22).

(4) Explain the significance of an atomic orbital
and describe the shapes of s-, p-, and d-orbitals,
Section 15.1(d).

(5) Define the radial distribution function, eqn
(15.1.25), and explain its significance.

(6) State the Bohr frequency condition, eqn
(15.1.26), and the selection rules for atomic transi-
tions, Section 15.1(f).

(7) State the Pauli principle and the Pauli
exclusion principle, Section 15.2(b).

(8) State and use the Clebsch—Gordan series for
the coupling of angular momenta, eqn (15.2.1).

(9) State the rules of the building-up principle and
Hund’s rule, and use them to account for the

electronic configurations of atoms, Section 15.2(d).

(10) Account for the variation of first ionization
energies through the Periodic Table, Section 15.2(e).

(11) Describe the strategy for self-consistent field
calculations of the electronic structures of many-
electron atoms, Section 15.2(f).

(12) Describe the origin of spin—orbit coupling,
and show how it is responsible for the fine structure
of spectra, Section 15.3(a).

(13) Calculate the spin—orbit coupling constant
from spectral information, Example 15.5.

(14) Describe the construction and significance of
term symbols, Section 15.3(b).

(15) Describe Russell-Saunders coupling, and
state the selection rules for many-electron atom
spectra, Section 15.3(b).

(16) Write expressions relating the magnetic mo-
ment of an electron to its orbital and spin angular
momenta, eqn (15.3.5), and for the enmergy of
interaction with a magnetic field, eqns (15.3.6) and
(15.3.7).

(17) Describe the meaning of precession, Fig.
15.22.

(18) Describe and explain the Zeeman effect,
Section 15.3(c).



