6) Discuss the rocking vibrations of the central atom A (mass M) of the square planar complex $A X_{4}(\mathrm{~m}=$ mass of X$)$ with single force constants k . Give the formula for ω. Sketch the degenerate level pattern.
7) The distance between two adjacent vibrational levels (the vibrational excitation energy) is (nearly) independent of $n, \Delta E_{n \rightarrow n+1}^{v i b}=\hbar \omega$. Give the rotational excitation energies $\Delta E_{m \rightarrow m+1}^{r o t}$.
8) Estimate the π-electron density along the benzene ring for 3 lowest doubly occupied „planar rotator orbitals". a) Using complex canonical orbitals: $\varphi_{m}=\exp (i m \varphi) / \sqrt{2 \pi}, m=$ $0,-1,+1$. b) Using real canonical orbitals: $1 / \sqrt{2 \pi}, \Phi_{m}=\left(\varphi_{m} \pm \varphi_{-m}\right) / \sqrt{2} \sim \cos m \varphi / \sqrt{\pi}$, $\sin m \varphi / \sqrt{\pi}, m=1$. c) Nonmandatory: Using a localized occupied orbital set $(1+2 \sin (\varphi+\alpha)) / \sqrt{3 \pi}, \alpha=0,-120^{\circ}, 120^{\circ}$.
9) Estimate the atomic radius. In the energetically lowest, stationary state, the electron would classically vibrate through the nucleus from $x=+R$ to $-R$. The velocities vary between $+v$ and $-v$, corresponding to momenta $\pm m \cdot v= \pm P$. According to Heisenberg $R \cdot P$ is about $n=1,2, \ldots \hbar$. Determine the minimal energy $E=P^{2} / 2 m-Z / R(d E / d P=$ 0) under this side condition $(P \cdot R=n)$. a) Give $\mathrm{P}, \mathrm{R}, \mathrm{T}, \mathrm{V}, \mathrm{E} . \mathrm{b})$ What is the ratio of $T: V: E ? c)$ Estimate the effective electronic mass for the 1 s state of $\mathrm{Hg}(\mathrm{m}=1, \mathrm{n}=1$, $Z=80)$. d) Give the relativistic change of orbital radius in $\%$; contraction or expansion?
10) Draw a sketch of the $5 \mathrm{~d}, 5 \mathrm{f}, 6 \mathrm{~s}, 6 \mathrm{p}, 6 \mathrm{~d}, 7 \mathrm{~s}, 7 \mathrm{p}$ AOs of the Pu atom a) on the energy scale, and b) on the radius scale. Which are „frozen core orbitals", which are "valence-dependent core orbitals", which are the „chemical valence orbitals", which are the „overlapping" orbitals? Which one-electron transitions are „allowed" between the above mentioned $n=6$ and $n=7$ one-electron levels?
