10) see above
11) Add two p-functions: $p_{\alpha}=\cos \alpha \cdot p_{x}+\sin \alpha \cdot p_{y}$. Describe what that is.
12) Assume the orbital normalization is $\langle s \mid s\rangle=\langle p \mid p\rangle=1$. What is the normalization of $\langle h \mid h\rangle$, where the hybrid is $h=(s+\sqrt{2} \cdot p) / \sqrt{3}$?
13) Compare the density of $(s, p)=s^{2}+p^{2}$, with that of the two hybrids $\left(h_{+}, h_{-}\right) ; h_{+}=$ $(s+p) / \sqrt{2}$ and $h_{-}=(s-p) / \sqrt{2}$.
14) Sketch and discuss the electron configuration of H_{2}^{-}.
15) Which molecules will become more/less strongly bound upon adding an electron: $C_{2}, N O, O_{2}, F_{2}$?
