9) Stationary States: Given the simple state function $\phi(x,t) = \psi(x) \cdot e^{i\omega t}$. Evaluate the probability destribution $W(x,t) = \phi^* \cdot \phi$. What is dW/dt?

10) Heisenberg uncertainty: A particle of mass M is "moving forth and back" with momentum $\pm p$ in a linear box of length L. The positional smearing of the stationary quantum state is $\Delta x^2 = L^{-1} \cdot \int_0^L dx (x - L/2)^2$. The kinetic energy of the quantum state of quantum number n is $T = p^2/2M = n^2\pi^2\hbar^2/2ML^2$. The momentum smearing for $\pm p$ is $\Delta p^2 = Ave[(0 \pm p)^2] = p^2$. Evaluate the "fuzziness product" $\Delta x \cdot \Delta p$.

11) Order of magnitude of atoms: In an atom with nuclear charge +Ze the electrons are distributed in x-direction between $-R, +R, \Delta x \sim R \sim$ atomic radius. The nuclear-electron attraction energy is $V \sim Ze \cdot -e/R$. Similarly, the momenta in x-direction are distributed between -P and $+P, \Delta p \sim P$ and the kinetic energy is $T = P^2/2m$. Assume $\Delta x \cdot \Delta p \sim n \cdot \hbar$. Search for the smallest energy. Give P, R, T, V, E. What are the ratios of T: V: E?

12) Heavy Atoms: Choose n = 1. What is the electron's velocity v for nuclear charge Z? It's relativistic effective mass is not 1 but $1/\sqrt{1 - (v/c)^2}$. How does R change due to relativity? How many % for Hg (Z = 80)?