13) A model based on quantum mechanics: The simple box model yields for the longest wave length absorption line of conjugated carbon chains with m double bonds and 2m chain atoms and a total length of $L \approx (2m + 1)D$ for the wave length λ : in case of equal C-C bond length (e.g. in cyanine dyes) $\lambda \approx c_0 \cdot L \approx c_1 \cdot (2m + 1)$. In the case of alternating bond lengths (e.g. merocyanines or polyenes) $\lambda \approx c_1 \cdot (2m + 1)/(1 + c_2 \cdot m)$. Show that $y = 1/\lambda$ versus x = 1/(2m + 1) yields a straight line. What is the meaning of y for x = 0?

14) The semiempirical approach: The first polyenes are colorless. Their UV-absorption wave lengths have been measured as: Ethene - 162 nm, Butadiene - 217 nm, Hexatriene - 257 nm, Ocatatraene - 290 nm, Decapentaene - 317 nm. Make a diagram of $1/\lambda$ versus 1/L. (For Din A4 paper, the following cm-scales are appropriate: $3000 \text{ nm}/\lambda$, and 60/(2m+1).) Which ployenes may have a visible color? Which color do you expect for very long chains?

15) Are closed shells stable? The Hückel rule: The ring model for a circular chain of N atoms with circumference $N \cdot D$ yields for the orbital energy levels $E_m = m^2/2\mu R^2$, where m = 0, +1, -1, +2, -2 etc. Assume that every atom supplies one valence electron. Occupy the energy levels with electrons according to Pauli's principle. Make a table with 3 columns: N = 2 (Ethene), 3, 4 (Butadiene), 5, 6 (Benzene), 7, 8, 9, 10, 11 - |m| for the HOMO – E_m in units of $[2\pi^2/\mu D^2]$.

16) The hen and the egg. Make a plot: E_m versus N. a) For given quantum shell number |m|: how does the energy vary with the size of the system? b) Why is an energy level particularly stable? c) When is a valence electron particularly loosely bound? d) Comment on the rule: Closed shells are stable. e) The Hückel rule states: rings with $(4n + 2)\pi$ electrons are particularly stable for integer n = 0, 1, 2 etc. Which is the "best" n according to the plot? f) An atomic s²p⁶ shell is said to be particularly stable. Comment on the stabilities of Mg²⁺, Na⁺, Ne, F⁻, O²⁻, N³⁻.