22) Inner and outer, core and valence orbitals. Order the $n=5,6,7$ orbitals of the U atom according to their spatial extensions. Order the $\mathrm{n}=5,6,7$ orbitals of the U atom according to their energy levels. Which are inner and outer (criterion: smaller or $\geq 6 \mathrm{~s}$) core and valence (criterion lower or $\geq 5 f$) orbitals?
23) Hybridization. Hybridize two p-orbitals $p_{x}=f(r, z) \cdot \cos \phi, p_{y}=f(r, z) \cdot \sin \phi$: $p=\cos \gamma \cdot p_{x}+\sin \gamma \cdot p_{y}$. Show that the hybrid orbital p has the same (r, z)-dependence as p_{x} and p_{y} and that it has the same ϕ dependence as p_{x}, except being rotated by some angle.
24) Hybridization and density. Given an s-orbital $s(r)$ and a p_{z}-Orbital $p(r, \theta)$, and the two sp-hybrides $h_{+}=(s+p) / \sqrt{2}$ and $h_{-}=(s-p) / \sqrt{2}$. Compare the densities of the two original orbitals, $\rho_{\text {orig }}=s^{2}+p^{2}$, and of the two hybrides, $\rho_{h y b}=h_{+}^{2}+h_{-}^{2}$.
25) d-s paradoxy of transition metal atoms. Discuss a virtual atom with two valence electrons 1 and 2. The total atomic energy is $E_{12}=h_{1}+h_{2}+g_{12}$, where h means the nuclear attraction energy (strongly negative) of one electron plus its kinetic energy (positive), and g is the interelectronic repulsion (positive). We apply the serious orbital approximation, where the two-electron state function $\Psi(1,2)$ is modeled as a product of two quasi-independent one-electron functions (orbitals) $\phi_{a}(1), \phi_{b}(1), \phi_{a}(2), \phi_{b}(2)$. Second we introduce the frozen ortibal approximation, where we assume that the state function of quasi-independent electron 1 in orbital a is independent of the state of electron 2.
Discuss the three two-electron states and the two one-electron states:
$d^{2}: E_{12}=2 H_{d}+G_{d d} \quad \epsilon_{d}=H_{d}+G_{d d}$
$d s: E_{12}=H_{d}+H_{s}+G_{d s} \quad \epsilon_{d}=H_{d}+G_{d s}, \epsilon_{s}=H_{s}+G_{d s}$
$s^{2}: E_{12}=2 H_{s}+G_{s s} \quad \epsilon_{s}=H_{s}+G_{s s}$
$d^{1}: E_{1}=\epsilon_{d}=H_{d}$
$s^{1}: E_{1}=\epsilon_{s}=H_{s}$
Assume $H_{s}-12 \mathrm{eV} ; H_{d}=-14 \mathrm{eV} ; G_{d d}=+6 \mathrm{eV} ; G_{s s}=+4 \mathrm{eV} ; G_{d s}=+2 \mathrm{eV}$.
a) Which two-electron and which one-electron configuration is the most stable, which one is the least stable? Draw a total energy level scheme for the five systems, all E's one above the other.
b) Determine the one-electron energies ϵ. Draw 5 orbital energy level schemes for the five systems, one besides the other one.
